COMPUTER ARCHITECTURE AND
ORGANIZATION.

Presented by
Dr.K.RAJKAMAL,
Assoc.Prof,

Dept of ECE,
KHIT.

KATLAM HARANADHAREDDY INSTITUTE OF TECHNOLOGY (AUTONOMOTUS)

Cr.

B.Tech. (5 Sem.) COMPUTER ARCHITECTURE AND | _ | _ ||

ORGANIZATION (Theory)

Pre-requisites: Digital Logic Design

Course Educational Objective:
1. To understand the architecture of a modern computer with its various processing units.

Also the Performance measurement of the computer system.
2. To understand the memory management system of computer.
3. To understand the various instructions, addressing modes
4. To understand the concept of /O organization

Course Outcomes:

At the end of the course, the student will be able to

CO1: Understand the architecture of modern computer.

CO2: Analyze the Performance of a computer using performance equation
CO3: Understanding of different instruction types.

CO4: Calculate the effective address of an operand by addressing modes
COS5: Understand the concepts of I/O Organization and Memory systems.

UNIT -1

Basic Structure Of Computers: Functional unit, Basic Operational concepts, Bus structures,
System Software, Performance, The history of computer development.

Machine Instruction and Programs:

Instruction and Instruction Sequencing: Register Transfer Notation, Assembly Language
Notation, Basic Instruction Types,

UNIT - II

Addressing Modes, Basic Input/output Operations, The role of Stacks and Queues in computer
programming equation. Component of Instructions: Logic Instructions, shift and Rotate
Instructions

Type of Instructions: Arithmetic and Logic Instructions, Branch Instructions, Addressing
Modes, Input/output Operations

UNIT - III

INPUT/OUTPUT ORGANIZATION: Accessing I/O Devices, Interrupts: Interrupt Hardware,
Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access,

Buses: Synchronous Bus, Asynchronous Bus, Interface Circuits, Standard I/O Interface:
Peripheral Component Interconnect (PCI) Bus, Universal Serial Bus (USB)

UNIT - IV

The MEMORY SYSTEMS: Basic memory circuits, Memory System Consideration, Read-
Only Memory: ROM, PROM, EPROM, EEPROM, Flash Memory, Introduction about Cache
Memories

Secondary Storage: Magnetic Hard Disks, Optical Disks,

KALLAM HARANADHAREDDY INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

UNIT-V

Processing Unit: Fundamental Concepts: Register Transfers, Performing an Arithmetic Or
Logic Operation, Fetching a Word from Memory, Execution of Complete Instruction,
Hardwired Control,

TEXT BOOKS

1. Computer Organization, Carl Hamacher, ZvonksVranesic, SafeaZaky, SthEdition,
McGrawHill, 2011.

2. Computer Architecture and Organization, John P. Hayes, 3+ Edition, McGrawHill, 2002.

REFERENCE

1. Computer Organization and Architecture — William Stallings Six™® Edition, Pearson/PHI

2. Structured Computer Organization — Andrew S. Tanenbaum, 4th Edition PHI/Pearson, 2012.

3. Fundamentals or Computer Organization and Design, - Sivaraama Dandamudi Springer
Int.Edition, 2003.

4. “Computer Organization and Design: The Hardware/Software Interface” by David A.
Patterson and John L.Hennessy, 1998.

5.1 P.Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998 |

Architecture

« Structure and behavior of the computer
as seen by the user.

| those properties, which directly affect the
logical working of a program;

| the attributes, which are apparent to a
programmer

Examples: instruction set and formats,
techniques for addressing memory,

number of bits used to represent data

Organization

> Organization: interconnection of operational units
for realizing the architectural specifications
Determination of which hardware should be used and

how the parts should be connected together

BASIC STRUCTURE OF COMPUTERS

> Functional Units

Functional Units

Arithmetic
Input and
logic
Memory
Output Control
/O Processor

Figure 1.1. Basic functional units of a computer.

Information Handled by a Computer

* Instructions/machine instructions

» Govern the transfer of information within a computer as well
as between the computer and its I/O devices

» Specify the arithmetic and logic operations to be performed
» Program

e Data

» Used as operands by the instructions
» Source program

* Encoded in binary code—-0and 1

Memory Unit

e Store programs and data

* Two classes of storage

Primary storage

Fast

Programs must be stored in memory while they are being executed
Large number of semiconductor storage cells

Processed in words

Address

RAM and memory access time

Memory hierarchy — cache, main memory

» Secondary storage — larger and cheaper

VY

/
’0

L)

e

*

e

*

e

*

e

*

/
’0

L)

Arithmetic and Logic Unit (ALU)

Most computer operations are executed in
ALU of the processor.

Load the operands into memory — bring them
to the processor — perform operation in ALU —
store the result back to memory or retain in
the processor.

Registers
Fast control of ALU

vVV VWV V

Control Unit

All computer operations are controlled by the control
unit.

The timing signals that govern the 1/O transfers are also
generated by the control unit.

Control unit is usually distributed throughout the
machine instead of standing alone.

Operations of a computer:

Accept information in the form of programs and data through an input
unit and store it in the memory

Fetch the information stored in the memory, under program control, into
an ALU, where the information is processed

Output the processed information through an output unit
Control all activities inside the machine through a control unit

' BASIC OPERATIONAL CONCEPTS OF)
COMPUTER

Examples: - Add LOCA, RO

=2 This instruction adds the operand at memory location LOCA, to operand
in register RO & places the sum into register. This instruction requires the
performance of several steps,

1. First the instruction is fetched from the memory into the processor.
2. The operand at LOCA is fetched and added to the contents of RO

: 9 Finally the rcsulting sum is stored in the register RO

o J

COMPUTER

= The preceding add instruction combines a memory access operation
with an ALU Operations. In some other type of computers, these
two types of operations are performed by separate instructions for
performance reasons.

Load LOCA, R1
Add R1, RO

—> Transfers between the memory and the processor are started by
sending the address of the memory location to be accessed to the
memory unit and issuing the appropriate control signals. The data

are then transferred to or from the memory

Re.

Connection Between the Processor
and the Memory

Registers

e Instruction register (IR)

e Program counter (PC)

e General-purpose register (R, — R,.1)
e Memory address register (MAR)

e Memory data register (MDR)

/" COMPUTER

= The fig shows how memory & the processor can be connected. In
addition to the ALU & the control circuitry, the processor contains a

number of registers used for several different purposes.

= The instruction register (IR):- Holds the instructions that is
currently being executed. Its output is available for the control
circuits which generates the timing signals that control the various

processing elements in one execution of instruction.
= The program counter PC:-

—> This is another specialized register that keeps track of execution of a
program. It contains the memory address of the next instruction to

be fetched and executed.

= Besides IR and PC, there are n-general purpose registers RO
through Rn-1.

e

~~ BASIC OPERATIONAL CONCEPTS OF ™
COMPUTER

The other two registers which facilitate communication with memory

arc: -

1. MAR — (Memory Address Register):- It holds the address of

the location to be accessed.

2. MDR — (Memory Data Register):- It contains the data to be

written into or read out of the address location.

Operating steps are

1. Programs reside in the memory & usually get these through the I/P

unit.

2. Execution of the program starts when the PC is set to point at the

first instruction of the program.,

3. Contents of PC are transferred to MAR and a Read Control Signal is

sent to the memory.

% P

/ BASIC OPERATIONAL CONCEPTS OF ~
COMPUTER

4. After the time required to access the memory elapses, the address

word is read out of the memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the
instruction is ready to be decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to
obtain the required operands.

7. An operand in the memory is fetched by sendjng its address to MAR
& Initiating a read cycle.

8. When the operand has been read from the memory to the MDR, it
is transferred from MDR to the ALU.

9. After one or two such repeated cycles, the ALU can perform the
desired operation.

A .

COMPUTER

10. If the result of this operation is to be stored in the memory, the

result is sent to MDR.
11. Address of location where the result is stored is sent to MAR & a

write Cyc]e is initiated.

12. The contents of PC are incremented so that PC points to the next

instruction that is to be executed.

—>Normal execution of a program may be preempted (temporarily
interrupted) if some devices require urgent servicing, to do this one
device raises an Interrupt signal.

- An interrupt is a request signal from an I/0 device for service by the
processor. The processor provides the requested service by

executmg an appropnate mterrupt service routine.

N, A

BUS STRUCTURES
INTRODUCTION

 The CPU sends various data values, instructions and

Information to all the devices and components inside the
computer.

- If you look at the bottom of a motherboard you'll see a
whole netwerk of lines or electronic pathways that join the
different components together.

» This network of wires or electronic pathways is called the
‘Bus'.

By 4 .) y 4" &) . e » e .. ,Ahn
TR 1T o-xlb....oo.t...v..,..oo T
feee veu “ 9@9. > yer

> :® o2 J® . -
cge el e el s eeN hilesm i
et W oy gy e - J v -

& . 1.2/ R
Herd i BNeOk = S dae "
PP e PP Y

e ..\.m.... “ .-3.... 3 O

M..l«”

<
o,
O
£
@
-=
O
=
©
=
=
O
o0

BUS

» A bus Is @ communication pathway connecting two or more
devices.

+ A key characteristic of a bus is that it is a shared transmission
medium.

» Multiple devices connect to the bus, and a signal transmitted by
any one device is available for reception by all other devices
attached o the bus.

 |f two devices transmit during the same time period, their signals
will overlap and become garbled. Thus, only one device at o
time can successfully fransmit.

BUS cont'd

» Typically, a bus consists of mulfiple communication
pathways, or lines. Each line is capable of transmitting
signals representing binary 1 and binary 0.

» several lines of a bus can be used to tfransmit binary digits

simultaneously (in parallel).

» For example, an 8-bit unit of data can be transmitted over
eight bus lines.

» Computer systems contain a number of different buses
that provide pathways between components at various
levels of the computer system hierarchy.

Computer Organization, Bus Structure

Bus Structure
A communication pathway connecting two or more devices

When a word of data is transferred between units all its bits
are transferred in parallel

ie. The bits are transferred simultaneously over many lines,
one bit per line.

A group of lines that serves as a connecting path for several
devices is called a _bus

A group of lines connected to different devices is called bus .
= Bus can carry data and control signals
= Single bus — simple way to interconnect functional units .

Computer Organization, Bus Structure

 Single Bus Structure

Memory Processor

Input Output

<{} ﬁ >

e e

Computer Organization, Bus Structure

All units are connected to this bus

Bus can used only for one transfer at a time

So only 2 units can actively use the bus at any given time.
Only one device at a time can successfully transmit .

Single bus — low cost and It is flexible for attaching diff devices

By using multiple bus simultaneously can transfer more than one
data atatime

This leads to increase the performance of the system.

So the bus can carry several data at a time in parallel such as
Power

Instructions

Data

Addresses

Commands

Computer Organization, Bus Structure

Multiple-Bus Organization

The following Figure shows a three-bus
structure.

All registers are combined into a single block
called register file with three ports: 2 outputs
allowing 2 registers to be accessed
simultaneously.

Buses A and B are used to transfer source
operands to the A and B inputs of ALU, and
result transferred to destination over bus C.

Computer Organization, Bus Structure

Bus A BusB Bus C
Y L L0
I Imncrementer I
- [P, }—
- Register

- file
Constant4

N >’

Computer Organization, Bus Structure

Diff units in a system having diff speed
Keyboard
Printer are relatively slow

some units are very fast all these devices communicate with
each other over the same bus

in order to communicate all types of units smoothly include
buffer registers with the devices to hold the data during
transfer.

= eg transfer of data between processor and printer
Processor sent data over the bus to printer buffer

Once the buffer is loaded the printer can start printing
With out the interaction of the processor

The bus and processor are now free to do another work.

SYSTEM BUS

» A bus that connects major computer components (processor,
memory, |/O) is called a system bus.

+ A system bus consists, typically, of from about fifty to hundreds of
?epCJT(oTe ines. Each line is assigned a particular meaning or
unction

+ System bus usually is separated into three functional groups .

* In addition, there may be power distribution lines that supply
power to the attached modules.

SYSTEM BUS MODEL

| CPU (ALU. [nput &
- Regsters. Memery | | Output
& Control) (10)

&
Data Bus

.‘\‘Q.]li:;:l EU:;

(Control Bus

System Bus

DATA BUS

+ A collection of wires through which data is transmitted
from one part of a computer to another.

» Data Bus can be thought of as a highway on which data
tfravels within a computer.

» This bus connects all the computer components to the
CPU and main memory.

» The data bus may consist of 32, 64, 128, or even more
separate lines.

+ The number-oflines being referred to as the width of the
data bus. Because each line can carry onlé.l bit at a time,
|

the number of lines determines how many bits can be

franstemred at a time.

DATA BUS cont'd

» |t Is a bidirectional bus.

» The size (width) of bus determines how much data can be
fransmitted at one time.

» E.Q.
+ A 16-bit bus can transmit 16 bits (2 bytes)of data at a time.
+ 32-bit buscan transmit 32 bits(4 bytes) at a fime.

» The size (width) of bus is a critical parameter in determining
system performance.

» The wider the data bus, the better, but they are expensive.

ADDRESS BUS

» A collection of wires used to identify particular location in
main memory is called Address Bus.

» Or in other words, the information used to describe the
memory locations fravels along the address bus.

+ Clearly, the width of the address bus determines the
maximum possible memory capacity of the system.

+ N address lines directly address 2¥memory locations.

ADDRESS BUS cont'd

» [t is an unidirectional bus.

» The CPU sends address fo a particular memory locations

and [/O ports.

» The address-bus consists of 16, 20, 24 or more parallel
signal lines.

ADDRESS BUS cont'd
» 8086: 20 address lines
— Could address 1 MB of memory
» Pentium: 32 address lines

— Could address 4 GB of memory

 [tanium:;-é4-address lines

— Could address 264 bytes of memory

CONTROL BUS

» Because the data and address lines are shared by all
components, there must be a means of controlling their
use.

» The control lines regulates the activity on the bus.

» Control signals transmit both command and timing
iInformation among system modules.

» The controtbus carries signals that report the status of
various devices.

CONTROL BUS

d Typical control bus signals are :

+ Memory Read : causes data from the addressed location
to be placed on the data bus.

+ Memory Write : causes data on the bus to be written into
the addressed location

» |/O write: causes data on the bus to be output to the
addressedH/fO-port

+ /O read: causes data from the addressed |/O port to be
placed on the bus

Example : Memory Read

» The following figure shows how the CPU reads the value 12
from the memory location 2453:

Memory [/O device READ,
. O[X‘l"dl 1011

2453 12]

: ’
- l'lA "
!

XY

Address bt (5

Data bus

Control bus

Example: Memory Read cont'd

» CPU sends out the address value 2453 on the address bus

» Simultaneously, CPU sends out the signal R/W =1 on
the confrol bus, which indicates a READ operation

» CPU then waits for the data from memory on the data bus

» The R/W = 1 signal and the address bus value 2453 will
cause thememory to retrieve the value at memory
location2453-10 be sent out on the data bus

Memory Read a Closer look

» Address of next instruction is in PC

- Address (MAR) is placed on address bus
» Control unit issues READ command

» Result (data from memory) appears on data bus

- Data from data bus copied into MBR
* PC incremented by 1.

» Data (instruction) moved from MBR 1o IR
* MBR is now free for further data fetches

Example: Memory Write

» The following figure shows how the CPU writes the value 53
from the memory location 24353:

Memory /O device WRITE

operation

2453 !2 158
.

53

4 ii

,:3 " .53 " oy r:

Address bus

Data bus

Control bus

Example: Memory Write cont'd

» CPU sends out the address value 2453 on the address bus

» Simultaneously, CPU also sends out the value 53 on
the data bus

» And the signal R/W = 0 on the control bus which indicating
a WRITE operation

» The R/W=107ignal along with the address bus value 2453
and data-bus-value 53 will cause the memory to store the
value 53 at the location 2453...

Control Bus cont'd

JdControl lines also include :

» Transter ACK: indicates that data have been accepted
from or placed on the bus.

» Bus request: indicates that a module needs to gain control
of the bus.

+ Bus grant:indicates that a requesting module has been
granted-control of the bus.

Control Bus cont'd

» Interrupt request: indicates that an interrupt is pending.

» Interrupt ACK: acknowledges that the pending interrupt
has been recognized.

» Reset: initializes all modules.

BUS De >lr”" 1 ISSsues
- Need to consider several design Issues :

+ Bus widfth

» Data and address buses.

* BUS type

» Dedicated or multiplexed.

* BUS operations
» Read, write, block transfer, interrupt, ...

x BUs arbitration
» Centralized or distributed.

* BUs timing

» Synchronous or asynchronous

Bus Type

» Dedicated buses
+ Separate buses dedicated to camy data and address information.
+ Good for performance.
+ But increases cost.
+ Mulfiplexed buses

+ Data and address information is time multiplexed(defined in the next slide
| on a shared bus.

+ Poor Performance
+ But Reduces cost.

Bus Operations

» Basic operations

» Read and write.

» Block transfer operations.
Read or write several contiguous memory locations.

Example: cache line fill.

» Interrupt operation.

SOFTWARE

» Software is a set of computer programs which are designed
and developed to perform specific task desired by the user or
by the computer itself.

System Software Application Software

System System System
Control Support Development
Programs Programs Programs

General Purpose Special Purpose

Types of Software

* System Software
* Application Software

Hardware ™\
L CPU dlsts mouse, /
_printer, etc e

‘ Software ?

-~ Software

Computer Instructions or
data, anything that
can be stored
electronically is

Software. ,,
-~ Examples:- Le

-~ Ms word, excel,
power point, spread
sheets, library
management system
etc.

System Software

* The system software is collection of programs
designed to operate, control and extend the processing
capabilities of the computer itself.

* These are generally prepared by computer
manufacturers.

* These software perform a variety of functions like file
editing, storage management, resource accounting, 1/O
management, etc.

Role of System Software

Virtual machine interface Actual machine interface

Interface A Interface B |
- > System software < > Hardware |

The virtual machine

Types of System Software

System Control Programs :

They control the execution of programs, manage the storage
and processing resources of the computer and perform other
management and monitoring functions. e.g., OS

System Support Programs :

They provide routine service functions to other computer
programs and computer users. e.g., Utility Programs

System Development Programs :
They assist in the creation of publication programs.

e.g., Language translators like interpreters, compilers and
assemblers

System Control Programs-0OS

An operating system is an integrated set of specialized
programs that are used to manage overall resources of and
operations of the computer.

Operating systems

P e

Language services Memory managers Information managers Scheduler Utilities

Compilers loaders Garbage Linkers ~ File Datobase Text Graphics
Assemblers collectors systems systems editors rouines

Inferpre

Operating System contd...

Main functions-

* Memory Management
* Processor Management
* Device Management

* File Management

* Security

* Control over system
performance

* Job Accounting

Operatmg System

An operating system is software which manages computer
hardware and software resources. It also provides
common services to computer programs.

- The operating system is an essential component of
the system software in a computer system. Application
programs are dependent on operating system to function

Linux b
_—-—A - d reeBsSD.
Mac OS lkd
O redhat soLaris

===3p Sun Cobalt

Utilities

- Utilities software is system software which is
manufactured to help ,analyze, configure,
optimize or to maintain a computer.

" It also helps in maintenance and problem
solving of a computer.

‘ Common types of utility programs

* Hardware utilities

* Virus-detection and recovery utilities

“ File-compression utilities

= Spam and pop-up blocker utilities

" Backup

“ Uninstall

System Development Programs-Language
Translators

Language translators are also called language processors.

Main functions are :
* Translate high level language to low level language.

* Check for and identity syntax errors that may be present in the
program being installed.

There are 3 types of translator programs-
1. Assembler
2. Interpreter

3. Compiler

Assembler

* Translates a source program into a corresponding object program.

Assembler tasks

*Convert symbolic op codes to binary

*Convert symbolic addresses to binary

*Perform assembler services requested by the pseudo-ops

*Put translated instructions into a file for future use

Interpreter

* A language translator that translates one program statement
at a time into machine code.

.

Interpreter | language ‘ s
statement (’_~ |

statement

Compiler

* A language translator that converts a complete program into
machine language to produce a program that the computer
can process 1n its entirely

Stage 1: Convert program

- Machine
Computer

program

Execute program

Program execution

‘ Device Drivers

> Device driver is actually a communication device
between device and computer

> It loads every time in memory

> When a new device is added the driver should be
installed in order to run the program

Features ot System Software

> Close to system

> Fast in speed

> Difficult to design

> Difficult to understand

> Less interactive

> Smaller in size

> Difficult to manipulate

> Generally written in low level language

I Application Software:

Application Software includes programs that do real work
for user.

Example:

Payroll systems, Inventory Control, Manage student
database, Word Processor, Spreadsheet and Database
Management System etc.,

”~

Application Softw

Actually the application software consists of

programs that are designed to make users more
comfortable or productive to assist personal
tasks

The application software is present on computer
hard disk

Application software can also be stored on CDs,
DVDs, and flash or keychain storage devices

Application Software

= Categories of Application Software

“ Types of Application

" Forms of Application Software

Categories of Application
Software

~ Business Software

~ Graphic & Multimedia

~ Home / Personal / Education

» Communication

T f Aoplication r

- Proprietary
~ In-house
~ Contract

» Off-the-shelf

- Customized package

!

| Forms of Application

~ Custom Software

- Web Application

-~ Open Source

- Shareware

X

Freeware

_~__Public-domain Software

Form Of Application

Soltware

" Package software

A software which is sold in a bundle due to
similar function of programs.

“ Example
>~ Microsoft office, windows Cd
Cla

Microsoft’ L_J —J

Office

Custom Soltware

This is software which
IS specially made for
an organization as
per their requirement.

Example
. Attendance system

1. Security code
system.

@ oo AM

Attendance System

MMS) USERTYPE ADAZN -
-~

USEINAME portyanh
FASSWOMD

LOSTN BRAET

| Web Application

A web application is any

application that uses a web ‘ /
browser. f i i

Example GOOSIC Docs
. Google docs

1. Drop Box

Open source software

“ Open source software is made available to
every one and can be change, modify and
distribute to public without any notification.

“ Example

. Linux I’ﬂ] Magento Lil}}l—x;\
i, L enind &4 RAILS
1. Moodle
@ o, THOOdle O
1. Wordpress T ':\\A?/-f
Drupal SR

1% DOTNETNUKE WORDPRESS

v.Drupal

l Kree ware

“ Free ware is the software that is freely
available to public but author has a copy
right, means that you can only use it ,not sell
it.

“ Example 9 symantec. e
. Antivirus Norton ' = |
AntiVirus

I Public domain software

WSQLite

“ Public domain software is
totally free and it is not

copyrighted plus it have no
restriction

Example
. SQlite
. Blast

. 12P

impossible?Possible

Computer
Performance

Performance

e The most important measure of a computer Is
how quickly it can execute programs.

e Three factors affect performance:
» Hardware design

> Instruction set

» Compiler

Performance

e Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions.

Main
memory

Cache
memory

Processor

Figure 1.5. The processor cache.

Performance

e The processor and a relatively small cache
memory can be fabricated on a single
Integrated circuit chip.

e Speed
e Cost
e Memory management

Processor Clock

e Clock, clock cycle, and clock rate

e The execution of each instruction is divided
Into several steps, each of which completes
In one clock cycle.

e Hertz — cycles per second

Basic Performance Equation

e T — processor time required to execute a program that has been

prepared in high-level language

N — number of actual machine language instructions needed to
complete the execution (note: loop)

S — average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

R — clock rate
Note: these are not independent to each other

N xS
R

T =

How to improve T?

Pipeline and Superscalar T
Operation

Instructions are not necessarily executed one after
another.

The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

Pipelining — overlapping the execution of successive
Instructions.

Add R1, R2, R3

Superscalar operation — multiple instruction
pipelines are implemented in the processor.

Goal — reduce S (could become <1!)

Clock Rate

e Increase clock rate

> Improve the integrated-circuit (IC) technology to make
the circuits faster

» Reduce the amount of processing done in one basic step
(however, this may increase the number of basic steps
needed)

e Increases in R that are entirely caused by
iImprovements in IC technology affect all
aspects of the processor’'s operation equally
except the time to access the main memory.

CISC and RISC

e Tradeoff between N and S

e A key consideration is the use of pipelining

> S s close to 1 even though the number of basic steps
per instruction may be considerably larger

> Itis much easier to implement efficient pipelining in
processor with simple instruction sets

e Reduced Instruction Set Computers (RISC)
e Complex Instruction Set Computers (CISC)

Compiler

e A compiler translates a high-level language program
Into a sequence of machine instructions.

e Toreduce N, we need a suitable machine instruction
set and a compiler that makes good use of it.

e Goal —reduce NxS

e A compiler may not be designed for a specific
processor; however, a high-quality compiler is
usually designed for, and with, a specific processor.

Performance Measurement

T is difficult to compute.
Measure computer performance using benchmark programs.

e System Performance Evaluation Corporation (SPEC) selects and
publishes representative application programs for different application

domains, together with test results for many commercially available
computers.

Compile and run (no simulation)
Reference computer

Running time on the reference computer

SPEC rating = - :
Running time on the computer under test

1

SPEC rating = (| [SPEC,)"
=1

Why Study Performance?

* Make intelligent design choices
* See through the marketing hype
* Key to understanding underlying computer organization

- Why is some hardware faster than others for
different programs?

- What factors of system performance are
hardware related? (e.g., Do we need a new
machine, or a new operating system?)

Computer performance

Computer performance is characterized by
the amount of useful work accomplished
by a computer system compared to the
time and resources used.

Computer performance

Depending on the context, good computer
performance may involve one or more of the
following:

* Short response time for a given piece of work
* High throughput (rate of processing work)
* Low utilization of computing resource(s)

* High availability of the computing system or
application

* Fast (or highly compact) data compression and
decompression

* High bandwidth / short data transmission time

Computer vs H/W Performance

* Latency/Response Time (clocks from input to corresponding
output)

—How long does it take for my program to run?

—How long must | wait after typing return for the result?
* Throughput (How many results per clock)

—How many results can be processed per second?

—What is the average execution rate of my program?

—How much work is getting done?

If we upgrade a machine with a new processor what do we
improve?

Response Time/Latency
If we add a new machine to the lab what do we increase?
Throughput

Design Tradeoffs

e Maximum Performance: measured by the
numbers of instructions executed per

Second

* Minimum Cost: measured by the size of the
circuit.

* Best Performance/Price: measured by the ratio
of MIPS to size. In powersensitive applications
MIPS/Watt is important too.

Aspect of software quality

Computer software performance,
particularly software application
response time, is an aspect of
software quality that is important
in human—computer interactions.

Performance Equation

The total amount of time (t) required to execute a
particular benchmark program is

t=N*C/H or equivalently
P=1*f/N
where

* P=1/tis "the performance” in terms of time-to-
execute

* N is the number of instructions actually executed
(the instruction path length).

» fis the clock frequency in cycles per second.

* C= is the average cycles per instruction (CPI) for
this benchmark.

* |= is the average instructions per cycle (IPC) for
this benchmark.

Performance Equation

An another performance equation- The
equation, which is fundamental to measuring
computer performance is :

lime ime cycles instructions

program cycle instruction program

where the time per program is the required CPU time.

Comparing the performance of two systems

In comparing the performance of two systems we
measure the time that it takes for each system to
perform the same amount of work. If the same
program is run on two systems, System A and

System B, System A is n times as fast as System B
if:

running time on system B
— V0

running time on system A

Comparing the performance of two systems

System A is x% faster than System B if:

running time on system B | <
(YR X T VR IR X TR N i]) X “_)(.) —
running time on system A

These formulas are useful in comparing the
average performance of one system with the
average performance of another.

Execution Time

* Elapsed Time/Wall Clock Time

counts everything (disk and memory accesses, I/0, etc.)

a useful number, but often not good for comparison purposes

e CPU time

Doesn’t include 1/O or time spent running other programs can
be broken up into system time, and user time

e QOur focus: user CPU time

Time spent executing actual instructions of “our” program

Computer Performance Measure

Millions of Instructions per Second Frequency in MHz

MIIE’ S clocksﬁ, Sec |
AVE(clocks/instruction)

CPl (Average Clocks Per Instruction)

How to Improve Performance?

seconds | cycles | |seconds Fre
- . | MIPS =k
program |program| | cycle J CPI

5o, to improve performance (everything else being equal) you can either

Decrease the # of required cycles for a program,or(improve ISA/Compiler)

Decrease the clock cycle time or, said another way,

Increase the clock rate. (reduce propagation delays or use pipelining)

Decrease the CPl (average clocks per instruction) (new H/W)

COMPUTER SYSTEM

THE HISTORY OF COMPUTER DEVELOPMENT

* Along time ago, human are using their
fingers, stones etc to do calculation.

* At the same time, they are trying to create an

apparatus that could facilitate the calculation
process.

e After a few trial, finally the complex and
advance calculation system has been
produced and it is known as a computer.

COMPUTER SYSTEM

* The History & Evolution Of Computer Basically,
the history of computer development is
divided into 2 parts :

before 1940 & after 1940 .

ISTORY OF

YL OMPUTERS /”

BEFORE 1940

COMPUTER SYSTEM

Abacus Counting Device

* Created on 3000 B.D.
at Babylonia.

* Was the first RN E
mechanical counting EEREE R
device in the world.

* Able to execute
addition and
subtraction operation .

John Napier's Bone

APIER’S BONES

. * Created on 1614 by John
- Napier.

* Facilitate multiplication and
division processes — faster
& easier.

* The first logarithm table
has been created.

'COMPUTER SYSTEM

Pascaline Machine

* Created on 1642 by Braise Pascal.

e Was the first mechanical machine or
calculator in the world.

e Able to execute addition and subtraction
processes.

T R
O (s [o e, [4 ot —
,';:‘1 “I"’j} ‘-.ji'l “H ..‘ ‘l;l'l). u;', i

OO0k

COMPUTER SYSTEM

Babbage Differentiation Machine

* Created by Charles Babbage on 1821.

e Was the first mechanical machine which is
used the steam power.

* Able to do a calculation and printing the
output automatically.

Babbage Analytical Engine_

* It has five (5) main parts :
" |nput unit
= Qutput unit
® Processing Unit
= Control unit
= Memory unit
* His invention has became a theory
model for today's computer
technology. Because of that, Charles

Babbage has been known as The
Ancestor of A Modern Computer

R e

1834

Babbage’s Analytical
Engine designed but never
built, with similar ideas to
the modem computer:
sections for input,

After 1940

Evolution

First Generation

Von
Neumann
Machine

Second Generation

Transistors

Ya

Third Generation

Integrated Circuit

y &

Microprocessor

'COMPUTER SYSTEM

Von

Neumann UNIVAC IBM

/ Turing
Machine

Mark 1

» Created on 1941 by Dr. Howard Aikern in
conjunction with IBM.

» Was the first electro-mechanical computer.

« Size : 55 feet long, 8 feet height and
connected with 800 km of wire.

Von

Neumann UNIVAC IBM

/ Turing
Machine

COMPUTER SYSTEM

ENIAC

Electronic Numerical Integrator And Computer
Eckert and Mauchly

University of Pennsylvania

Trajectory tables for weapons

Started 1943

Finished 1946

= ENIAC was created to help with the war effort
against German forces.Used until 1955

COMPUTER SYSTEM

ENIAC

Decimal (not binary)

20 accumulators of 10 digits
Programmed manually by switches
18,000 vacuum tubes

30 tons

15,000 square feet

140 kW power consumption

5,000 additions per second

1000 times faster than Mark 1.

Von

NEUmannRY ||\ \/AC IBM

/ Turing
Machine

CMPD223 COMPUTER ORGANIZATION

Stored-program concept

* The task of entering and altering program is
tedious for ENIAC. Suppose a program could
be represented in a form suitable for storing in
memory alongside data. Then computer could
get its instruction by reading them from
memory and program could be set or altered
by settings the values of a portion of memory.
This idea is known as stored-program concept
an developed by Von Neumann referred to IAS
computer.

COMPUTER SYSTEM

Von Neumann / Turing Machine

* Stored Program concept
= Main memory storing programs and data
= ALU operating on binary data

= Control unit interpreting instructions from
memory and executing

* |nput and output equipment operated by
control unit

COMPUTER SYSTEM

Von Neumann / Turing Machine -
Example

1111
RAsasnssnsRsRFNE soged o

b T

-
-
-
4
-
e

Von Neumann Machine - Structure

Main Memory I/O Equipment

(M) (1,0)

Program Control Unit
(CC)

CMPD223 COMPUTER ORGANIZATION

Von Neumann earlier proposal

* First —since the device is primarily a
computer, it will have to perform addition,
subtraction, multiplication or addition
therefore it need special organs to do it,
therefore come the CA

» Second- The logical control of the device that
is the proper sequencing of its operation,
carried out by central control organ, therefore
come the second part, CC

CMPD223 COMPUTER ORGANIZATION

Von Neumann earlier proposal

* Third — Any device that is to carried out long
and complicated operation need considerable
memory, therefore come the third specific
part of the device, M

* These three specific part called CC, CAand M
correspond to the associative neurons
nervous system

CMPD223 COMPUTER ORGANIZATION

* Fourth- The device need an organ to transfer
from R to specific part of C or M, these organ
form its input called, I.

* Fifth — The device must have an organ to

transfer from C or M to R outside specific
medium. These organ form O, output.

Von Neumann / Turing Machine (2)

* Princeton Institute for Advanced Studies
= |AS

* Completed 1952

|IAS

* 1000 x 40 bit words

Binary number
2 x 20 bit instructions

* Set of registers (storage in CPU)

Memory Buffer Register — contains word to be stored/received from in
memory or sent to i/o unit.

Memory Address Register — specifies the address in memory of the word
to be written from or read into MBR.

Instruction Register - contains 8-bit operation code instruction being
executed.

Instruction Buffer Register — to hold temporarily the instruction
Program Counter — contain address of the next instruction.

Accumulator
hold temporarily operands and result of ALU
operation.

Multiplier Quotient

|AS — Structure

Arithmetic-logic Unit (ALU)

AC \V/[0]
T 1.

Arithmetic-logic Circuits

. MBR |

IBR PC
r
IR

|/O Equipment
(1,0)

VAR Main Memory (M)

Control 3 Control
Circuits Signals

Program Control Unit

CMPD223 COMPUTER ORGANIZATION

|AS operation

* The opcode of the next instruction is loaded into
the IR and the address portion is loaded into
MAR. The instruction may by be taken from IBR
or it can be taken from memory by loading a
word into MBR, then down to IBR, IR and MAR.

* Once in the IR, the control circuitry interprets the
opcode and execute the instruction by sending
the right signal to moved the data or an
operation to be performed by the ALU.

COMPUTER SYSTEM

IAS Computer - Example

W ——— —— Y T ————
R
" . - 5:5

’
T w——y

Von

Neumann UNIVAC

/ Turing
Machine

Universal Automatic Computer
(UNIVAC)

‘1947
UNIVAC |
Eckert-Mauchly Formed
Computer Corporation

(to manufacture computer
commercially)

’Late 1950
UNIVAC I
Part of
Sperry-Rand
Corporation

e Faster & more
memory

CMPD223 COMPUTER ORGANIZATION

UNIVAC

* UNIVAC | —the first successful commercial
computer. Used for scientific and commercial
application ie, matrix algebraic computation,
statistical problem, premium billings, or life
insurance company and logistic problem.

* UNIVAC Il — greater memory capacity and
higher performance

COMPUTER SYSTEM

UNIVAC - Example

ac tlectronic Computer
T

Von

Neumann UNIVAC

/ Turing
Machine

Second Generation Machine

IBM

‘ 700/7000

series

Business
%1953 Applications

The 701
IBM 15t stored program computer
Scientific Calculations

COMPUTER SYSTEM

IBM 701

COMPUTER SYSTEM

Transistors
Made from Silicon (Sand)

Invented 1947 at Bell Labs @’

William Shockley et al.

Replaced vacuum tubes: wires, metal plates,
glass capsule and vacuum.

Solid State device made from silicon.

Advantages of Transistors

* Smaller
* Cheaper
* Less heat dissipation

COMPUTER SYSTEM

Transistors Based Computers

Second generation machines

NCR & RCA produced small transistor
machines

IBM 7000
Digital Equipment Corporation(DEC) - 1957

" Produced PDP-1 — first mini computer
phenomenon.

COMPUTER SYSTEM

1948

Third Generation Machine

Integrated Circuit/Microelectronics

* Literally - “small
electronics”

* Transistors were replaced by
integrated circuits(IC)

* One IC could replace
hundreds of transistors

* This made computers even
smaller and faster.

CMPD223 COMPUTER ORGANIZATION

Integrated circuit

* In 1958, came an achievement that
revolutionized electronics and started the era
of microelectronic, the invention of integrated
circuit, defined the third generation of

computer.

* |nitially only a few gates and memory cells,
could be reliably manufactured together. As
time went on, it become possible to pack
more and more component on the same chip

CMPD223 COMPUTER ORGANIZATION

* The cost of chip remained unchanged during
the period growth of density. This means the

cost of memory circuitry has fallen at a
dramatic rate

* Because logic and memory elements are
placed closer together on more densely
packed chips, the electrical path length is
shortened, increasing operating speed.

CMPD223 COMPUTER ORGANIZATION

* The computer become smaller
* Reduction in power and cooling requirement

* The interconnection of integrated circuit are
more reliable than solder connection.

Later Generation Computers

Later Generation Computers

* In 1970 the Intel Corporation invented the
Microprocessor: an entire CPU on one chip

* This led to microcomputers-computers on a desk

May 2014 53

Later Generation Computers

This transformation was a result of the invention of the
microprocessor.

A microprocessor (uP) is a computer that is fabricated on an
integrated circuit (IC).

Computers had been around for 20 years before the first
microprocessor was developed at Intel in 1971.

CMPD223 COMPUTER ORGANIZATION

Microprocessor

* More than 1000 component can be placed on a
single integrated chip. VLSI achieved more than
10000 component on single chip.

* Just as density of element of memory chips has
continue to rise, so has the density of elements
on processor chips. As time went on, more and
more elements were placed on each chip, so that
fewer and fewer chips were needed to construct.
a single computer processor. A breakthrough is
achieved on 1971.

Intel

Year Computer Description
Name

1971

1972

1974

4004

8008

8080

First microprocessor

All CPU components on a single
chip

4 bit

8 bit

Both designed for specific
applications

Intel’s first general purpose
microprocessor

Chapter 2. Machine
Instructions and
Programs

Objectives

e Machine instructions and program execution,
Including branching and subroutine call and return
operations.

e Number representation and addition/subtraction in
the 2’s-complement system.

e Addressing methods for accessing register and
memory operands.

e Assembly language for representing machine
Instructions, data, and programs.

e Program-controlled Input/Output operations.

Instruction and
Instruction
Sequencing

“Must-Perform” Operations

e Data transfers between the memory and the
processor registers

e Arithmetic and logic operations on data
e Program sequencing and control
e |/O transfers

Register Transfer Notation

e |dentify a location by a symbolic name
standing for its hardware binary address

(LOC, RO,...)

e Contents of a location are denoted by placing
square brackets around the name of the
location (R1—[LOC], R3 «—[R1]+[R2])

e Register Transfer Notation (RTN)

Assembly Language Notation

e Represent machine instructions and
programs.

e Move LOC, R1 = R1—[LOC]
e Add R1, R2, R3 = R3 «[R1]+[R2]

CPU Organization

e Single Accumulator
Result usually goes to the Accumulator

Accumulator has to be saved to memory quite
often

e General Register

Registers hold operands thus reduce memory
traffic

Register bookkeeping

e Stack
Operands and result are always in the stack

Instruction Formats oo

e Three-Address Instructions

ADD R1, R2, R3 R1 — R2 +R3
e Two-Address Instructions

ADD R1, R2

R1 +— R1+R2

e One-Address Instructions

ADD M

AC « AC + M[AR]

e Zero-Address Instructions

ADD
e RISC Instructions

TOS « TOS + (TOS — 1)

Lots of registers. Memory is restricted to Load & Store

(Rt 7T e et ey o)

Opcode

Operand(s) or Address(es)

Instruction Formats

Example: Evaluate (A+B) * (C+D)

e Three-Address
ADD RI1, A, B
ADD R2,C,D
MUL X, R1, R2

;R1<—|\/|
' R2 — M
;M[X]<—

A] + M[B]
C] + M[D]

R1 * R2

Instruction Formats

Example: Evaluate (A+B) = (C+D)

e Two-Address
MOV R1, A
ADD R1,B
MOV R2,C
ADD R2,D
MUL R1, R2
MOV X, R1

- R1 « M[A]
- R1 « R1 + M[B]
- R2 « M[C]
- R2 « R2 + M[D]

;?1<—R1*R2
;M[X]<—R1

Instruction Formats

Example: Evaluate (A+B) = (C+D)

e One-Address
LOAD A
ADD B
STORET
LOAD C
ADD D
MUL T
STOREX

; AC — M[A]
, AC — AC + M[B]
 M[T] < AC
, AC — MI[C]
; AC — AC + M[D]
; AC — AC = M[T]
; M[X] — AC

Instruction Formats

Example: Evaluate (A+B) * (C+D)

e Zero-Address
PUSH A
PUSH B
ADD
PUSH C
PUSH D
ADD

MUL
(C+D)*(A+B)

POP X

: TOS < A

' TOS «— B

; TOS «— (A +B)
, TOS « C

: TOS <« D

; TOS « (C + D)
' TOS «

: M[X] — TOS

Instruction Formats
Example: Evaluate (A+B) * (C+D)

RISC
LOAD
LOAD
LOAD
LOAD
ADD
ADD
MUL

R1, A
R2, B
R3, C
R4, D
R1, R1, R2
R3, R3, R4
R1, R1, R3

STOREX, R1

R1 «— M|
R2 «— M|
R3 «— M|
R4 — MI[D]
R1 «— R1+R2

Q0w >

'R3 — R3 + R4

; R1 — R1 * R3

: M[X] — R1

Using Registers

e Registers are faster

e Shorter instructions

The number of registers is smaller (e.g. 32
registers need 5 bits)

e Potential speedup

e Minimize the frequency with which data is
moved back and forth between the memory
and processor registers.

Instruction Execution and
Straight-Line Sequencing

Address Contents
. _ . Assumptions:
Begin execution here —e | Move A,RO . .
: 3-instruction - One memaory operand
I +4 Add B,RO program . :
. segment per INstruction
I +8 Move RO,C

- 32-bit word length

- Memory is byte
addressable

A - - Full memory address

can be directly specified

in a single-word instruction

Data for
the program

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43

Figure 2.8. A program for C « [A] + [B].

Branching

i Move NUM1,R0
i +4 Add NUM2,RO
i +8 Add NUM3,RO

| +4n- 4 Add NUMnN,RO
I +4n Move RO,SUM

SUM
NUM1

NUM?2

NUMnN

Figure 2.9. A straight-line program for adding n numbers.

Branching

Program
loop

Branch target

Conditional branch

Figure 2.10. Using a loop to add n numbers.

Move N,R1
Clear RO

" LOOP

Determine address of
"Next" number and add
"Next" number to RO

Decrement R1

Branch>0 LOOP
Move RO,SUM

SUM

NUM1
NUM?2

NUMnN

Condition Codes

e Condition code flags

e Condition code register / status register
e N (negative)

e Z (zero)

e V (overflow)

e C (carry)

e Different instructions affect different flags

Conditional Branch
Instructions

e Example: : 11110000
e /11110000 +(-B): 11101100
e 2:00010100 11011100

R
= Z=0
S=1

Status Bits

THANK YOU

COMPUTER ARCHITECTURE AND
ORGANIZATION.

Presented by
Dr.K.RAJKAMAL,
Assoc.Prof,

Dept of ECE,
KHIT.

Addressmg
Modes

Generating Memory Addresses

e How to specify the address of branch target?

e Can we give the memory operand address
directly in a single Add instruction in the loop?

e Use a register to hold the address of NUM1,
then increment by 4 on each pass through
the loop.

Addressing Modes

(RS 7P e et s/ ey 7

° Implled Opcode|Mode
AC is implied in “ADD M[AR]" in “One-Address”
INStr.

TOS is implied in “ADD” in “Zero-Address” instr.

e Immediate

The use of a constant in “MOV R1, 57, i.e. R1 «
5

e Regqister
Indicate which register holds the operand

Addressing Modes

e Register Indirect

Indicate the register that holds the number of the
register that holds the operand

MOV R1, (R2)
e Autoincrement / Autodecrement
Access & update in 1 instr. R3 =

e Direct Address

Use the given address to access a memory
location

R1

R2 =

Addressing Modes

e Indirect Address

Indicate the memory location that holds the
address of the memory location that holds the

data Leizasv
AR =

100
101
102
103
104

Addressing Modes

. AHN7727)
e Relative Address 27
— . O |
EA = PC + Relative Addr . e@
- ¢
PC = 2 &

O,

T 100 2 |
101 vé

102
Could be Positive or 103
Negative 104

(2’s Complement)

Addressing Modes

e Indexed

EA = Index Register + Relative Addr

Useful with
“Autoincrement” or
“Autodecrement”

Could be Positive or
Negative
(2’s Complement)

XR =

O,

AR

100
101
102
103
104

A2V

Addressing Modes 3
e Base Register Y

EA = Base Register + Relative Addr
Could be Positive or AR =
Negative
(2’s Complement) @
100
BR = PR 4
101
102
Usually points to 103
the beginning of 104
an array

Addressing Modes

e The different
ways in which
the location of
an operand is
specified in
an instruction
are referred
to as
addressing
modes.

Name Assem bler Addressing function
Immediate #Value Op erand = Value
Register Ri EA = Rj
Absolute (Direct) LOC EA = LOC
Indirect (Ri) EA = [R/]

(LOC) EA = [LOC]
Index X(R i) EA = [Ri]+ X
Base with index (Ri,Rj) EA = [Ri]+ [Rj]
Base with index X(R i,Rj) EA = [Ri]+ [Rj] + X

and offset

Relative X(PC) EA = [PC] + X
Autoincremen t (Ri)+ EA = [Ri];

Autodecrement

—(R)

Increment R

Decremen t Ri ;
EA = [Ri]

Indexing and Arrays

Index mode — the effective address of the operand
IS generated by adding a constant value to the
contents of a register.

Index register
X(R): EA =X+ [R]]
The constant X may be given either as an explicit

number or as a symbolic name representing a
numerical value.

If X Is shorter than a word, sign-extension is needed.

Indexing and Arrays

e In general, the Index mode facilitates access
to an operand whose location is defined
relative to a reference point within the data
structure in which the operand appeatrs.

e Several variations:
(Ri R): EA=[R|] + [R]]
X(R;, Rj): EA=X+[R]+ [Rj]

Relative Addressing

Relative mode — the effective address is determined
by the Index mode using the program counter in
place of the general-purpose reqister.

X(PC) — note that X is a sighed number
Branch>0 LOOP

This location is computed by specifying it as an
offset from the current value of PC.

Branch target may be either before or after the
branch instruction, the offset is given as a singed
num.

Additional Modes

e Autoincrement mode — the effective address of the operand is
the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

e (R)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

e Autodecrement mode: -(R;) — decrement first

Move N,R1 }
Move #NUM1,R2 Initialization
Clear RO
—= |OOP Add (R2)+,RO
Decrement R1
Branch>0 LOOP
Move RO,SUM

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Basic
Input / Output
Operations

/10

e The data on which the instructions operate
are not necessarily already stored in memory.

e Data need to be transferred between
processor and outside world (disk, keyboard,
etc.)

e |/O operations are essential, the way they are
performed can have a significant effect on the
performance of the computer.

Program-Controlled 1/O t
Example

e Read in character input from a keyboard and
produce character output on a display screen.

> Rate of data transfer (keyboard, display, processor)

> Difference in speed between processor and 1/O device
creates the need for mechanisms to synchronize the
transfer of data.

» A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

Program-Controlled I/O
Example

- Reqisters
- Flags
- Device interface

Program-Controlled 1/O t
Example

e Machine instructions that can check the state

of the status flags and transfer data:

READWAIT Branch to READWAIT if SIN=0
Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT =0
Output from R1 to DATAOUT

Program-Controlled 1/O t
Example

e Memory-Mapped I/O — some memory
address values are used to refer to peripheral
device buffer registers. No special
Instructions are needed. Also use device

status registers.

READWAIT Testbit #3, INSTATUS
Branch=0 READWAIT

MoveByte DATAIN, R1

Program-Controlled 1/O t
Example

e Assumption — the Initial state of SIN is 0 and the
initial state of SOUT Is 1.

e Any drawback of this mechanism in terms of
efficiency?
Two walit loops—->processor execution time is wasted
e Alternate solution?
Interrupt

Stacks & Queues

Stack Organization set

[LYY

Current ~

Top of Stack L
e LIFO v .
Last In First Out 1
2
3
4
5
SP 6
i
FULL EMPTY 8
9
Stack Bottom [10

Stack

Stack Organization set

=

Current ~

e PUSH Top_?gsstack ; L
SP—~SP-1 1
M[SP] «— DR :2%
If (SP =0) then (FULL «— 1) 4
EMPTY <0 5
SP 6
.
FULL EMPTY 8
9
Stack Bottom 10

Stack

Stack Organization

e POP
DR «— M[SP]
SP «— SP +

Current
Top of Stack
TOS

If (SP = 11) t
FULL «— O

nen (EMPTY «— 1)

SP

FULL EMPTY

Stack Bottom

© 00N O 01 A~ WD PEF O

=
o

T

&

Stack

Stack Organization

e Memory Stack

PUSH PC
SP—~SP-1
M[SP] «— DR
POP AR
DR «— M[SP]

SP «— SP + 1

SP

100 |
101
102

200

201
202

Reverse Polish Notation oo

e Infix Notation
A+B

e Prefix or Polish Notation
+AB

e Postfix or Reverse Polish Notation (RPN)
AB+

(7)) (1) = (3) (3) * +

A*xB+C=*D -R=PN> AB*CD=*+ (8) () (3) =+
(8) (9) +

17

Reverse Polish Notation

e Example

(A+B) w F]

(AB+) (DE+) C*x F+ %

Reverse Polish Notation

e Stack Operation
(3) (4) = (5) (6) * +

PUSH 3
PUSH 4
MULT
PUSH 5
PUSH 6
MULT

ADD

42

Queues

b

v

Queue is an ADT data structure similar to stack,
except that the first item to be inserted is the first
one to be removed.

This mechanism is called First-In-First-Out (FIFO).

Placing an item in a queue is called “insertion or
enqueue”, which is done at the end of the queue
called “rear”.

Removing an item from a queue is called “deletion
or dequeue”, which is done at the other end of the
queue called “front”.

Some of the applications are : printer queue,
keystroke queue, etc.

Deletion __;'77 1 I l 1 l I | € Insertion

Front

The Queue Operation

Placing an item in a queue is called
“insertion or enqueue”, which is done
at the end of the queue called “rear”.

Operations On A Queue

].To insert an element in
queue

2.Delete an element from
queue

e

Algorithm QINSERT (ITEM)

].If (rear = maxsize-1)
print (“queue overflow”) and return
2.Else
rear = rear + 1

Queue [rear] = item

D

Algorithm QDELETE () sess’

1.1f (front =rear)

print “queue empty” and return
2. Else

Front = front + 1

item = queue [front];

Return item

-

Queue Applications sesc”

> Real life examples
v'Waiting in line
v'Waiting on hold for tech support
> Applications related to Computer Science

v'Round robin scheduling
v’Job scheduling (FIFO Scheduling)
v'Key board buffer

.

3 states of the queue

/.Queue is empty
FRONT=REAR
2.Queue is full
REAR=N
3.Queue contains element >=1
FRONT<REAR
NO. OF ELEMENT=REAR-FRONT+1

e

Type of queue o

Circular
Queue

Dequeue

Priority (Double
Queue ended

Queue)

Simple Queue s

* Simple queue defines the simple operation of
queue 1n which nsertion occurs at the rear of
the list and deletion occurs at the front of the
list.

Deletion e & Insertion

| T

Front Rear

Circular Queue

* In a circular queue, all nodes are treated as
circular. Last node 1s connected back to the
first node.

* Circular queue 1s also called as Ring Buffer.
* [t 1s an abstract data type.

* Circular queue contains a collection of data
which allows 1nsertion of data at the end of the
queue and deletion of data at the beginning of
the queue

XX
TIX
C)|
paTo Lo i
Front Rear ee
Fig. Circular Queue

L102030 S 1S 25]
1\l [=o] s | JT

Front U Rear

G20

Fig. Circular Queue

Priority Queue

* Priority queue contains Priority Queue
data items which have

some preset priority.
While removing an - :
element from a priority - . A=
queue, the data item with
the highest priority 1s
removed first.

* In a priority queue,
insertion is performed in
the order of arrival and

deletion 1s performed Enqueue
based on the priority.

/ Dequeue

Dequeue
(Double ended Queue)

* In Double Ended Queue, insert and delete
operation can be occur at both ends that 1s front
and rear of the queue

Insertion Insertion
P -
Deletion Front Rear Deletion

Fig. Double Ended Queue (Dequeue)

Enqueue Operation

Step 1 — Check if the queue e Fron
1s full. 0 1 l

Step 2 — If the queue is full, \
produce overflow error and

exit.

Step 3 — If the queue is not
full, increment rear pointer
to point the next empty

space. l l
Step 4 — Add data element
to the queue location, where
the rear 1s pointing.

Step S — return success. Queue Enquee

. . A before

Rear Front

Dequeue Operation

Step 1 — Check if the queue
1s empty.
Step 2 — If the queue is

empty, produce underflow
error and exit.

Step 3 — If the queue is not
empty, access the data
where front is pointing.

before

Step 4 — e

Increment front pointer to
point to the next available
data element.

Step 5 — Return success.

Rear

|

0

Rear

Front

|

C B

Queue

Queue Dequeue

Front

|

dequeue

Component of Instructions 41

Logic
Instructions,
shift and Rotate
Instructions

Additional Instructions

Logical Shifts

e Logical shift — shifting left (LShiftL) and shifting right
(LShiftR)

-— C - RO -— 0
before: | 0 o 11 10 = - = 0 1 1
after: | 1 110 - - - 01 1 0 O
(a) Logical shift left LShiftL #2,R0
0 —= RO —» C —»
before: 01110 - +« - 0 11 0
after: o oo111o0 . . .0 1

(b) Logical shift r ight LShiftR #2,R0

Arithmetic Shifts

before:

after:

— RO —a C
1 0 0 1 1 1 0 0
1 11 0 0 1 1 0 1

(c) Ar ithmetic shift right

AShiftR #2,R0

Rotate

000
000
o
before: | 0 o1 11 0 01 1|
after: | 1 [1 1 0 011 0 1|
(a) Rotate left without carry RotateL #2,RO

-

before: | O

0 1 1|

after: | 1 [1 1 0

011 0 0|

(b) Rotate left with carry

RotatelLC #2,R0

- RO e —
before: [0 1 1 1 0 o1 1| |[o]
after [1 1 0 1 1.1 0 o| [1]

(c) Rotate right without carry

RotateR #2,R0

o

before: |O 1 1 1 0

o1 1] |of

after: |1 0 0 1 1 1 0

of [

(d) Rotate right with carry

RotateRC #2,R0

Figure 2.32. Rotate instructions.

Rotate

» Each bit in the accumulator can be shifted
either left or right to the next position.

RLC None Rotate accumulator left

» Each binary bit of the accumulator is rotated left by one
position.

» Bit D7 is placed in the position of DO as well
as in the Carry flag.

» CY is modified according to bit D7.
» S, Z, P, AC are not affected.
Example: RLC.

g

RRC None Rotate accumulator right

»Each binary bit of the accumulator is rotated right by one position.
»Bit DO is placed in the position of D7 as well as in the Carry flag.
»CY is modified according to bit DO.

»S, 7, P, AC are not affected.

Example: RRC.

RAL None Rotate accumulator left through carry

»Each binary bit of the accumulator is rotated left by one position
through the Carry flag.

» Bit D7 is placed in the Carry flag, and the Carry flag is placed in
the least significant position DO.

»CY is modified according to bit D7.

» S,7Z, P, AC are not affected.

Example: RAL.

RAR None Rotate accumulator right through
carry

»Each binary bit of the accumulator is rotated right by one position
through the Carry flag.

» Bit DO is placed in the Carry flag, and the Carry flag is placed in
the most significant position D7.

»CY is modified according to bit DO.

»S, Z, P, AC are not affected.

le: RAR.

Complement

» The contents of accumulator can be
complemented.

» Each 0 1s replaced by 1 and each 1 1s replaced
by 0.

CMA None Complement accumulator

» The contents of the accumulator are complemented.
» No flags are affected.
Example: CMA.

CMC None Complement carry

» The Carry flag is complemented.
» No other flags are affected.
» Example: CMC.

STC None Set carry

»The Carry flag is set to 1.
» No other flags are affected.
» Example: STC.

Multiplication and Division

e Not very popular (especially division)
e Multiply R;, R;
R; — [R] X [R}]
e 2n-bit product case: high-order half in R(j+1)
e Divide R;, R,
Rj — [R]/[R]]
Quotient is in R}, remainder may be placed in R(j+1)

Type of
Instructions

Arithmetic and Logic
Instructions, Branch
Instructions

Assembly Language

Types of Instructions

e Data Transfer

nstructions

Name |Mnemonic

Load

Store

Move

Exchange

Input

Output

Push

Pop

Data value is
not modified

Data Transfer Instructions

Direct address LD AC — M[]

Indirect address LD @ AC — M[M] 1]
Relative address LD $ AC «— M[PC+]
Immediate operand LD #NBR AC — NBR

Index addressing LD (X) |AC «— M| +XR]
Register LD R1 AC «— R1

Register indirect LD (R1) AC — M[R1]
Autoincrement LD (R1)+ AC — M[R1], R1 «— R1+1

Data Manipulation Instructions | se

e Arithmetic Name Mnemonic
. . . . Increment |
e Logical & Bit Manipulation Decrement
: Add
e Shift Subtract
Multiply
Divide
Name Mnemonic Add with carry
Clear Subtract with borrow
Complement Name Mnemonic
AND Logical shift right
OR Logical shift left
Exclusive-OR Arithmetic shift right
Clear carry Arithmetic shift left
Set carry Rotate right
IComplement carry Rotate left
Enable interrupt IRotate right through carry
Disable interrupt Rotate left through carry

Program Control Instructions | &2

Name

Mnemonic

Branch

Jump

Skip

Call

Return

Compare
(Subtract)

Test (AND)

Mask

Subtract A — B but
don’t store the result

1011 001

0000 00O

]
0000 oooy

Conditional Branch

Instructions s

Branch if zero

Branch if not zero

Branch if carry

Branch if no carry

Branch if plus

Branch if minus

Branch if overflow

<I<IOIOW|IO|IO|IN|N
[
Ol |Fr|O|lO|FR|O|Fr

Branch if no overflow

UNIT-III

INPUT/OUTPUT ORGANIZATION

I/0 Organization

The Input / output organization of computer depends
upon the size of computer and the peripherals
connected to it. The I/O Subsystem of the computer,
provides an efficient mode of communication
between the central system and the outside

environment.

S

Peripheral Devices

An external device connected to an /O module
Provide a means of exchanging data between the
external device environment and the computer.

Attach to the computer by a link to an I/O module

The link is used to exchange control, status, and
data between the I/O module and the external
device.

-
t_—:-‘ﬁ

Peripheral Devices

1) Monitor

11) Keyboard

111) Mouse

1v) Printer

v) Magnetic tapes

The devices that are under the direct control of the
computer are said to be connected online.

Control A Status 4 Data bits

signals from signals to to and from
1/0 module 1/0 module 1/0 module

A4 A 4

Control Buffer
Logic
Transducer
E

Data (device-unique)
to and from
Y environment

Figure 7.2 Block Diagram of an External Device

" A
/O Module Structure

Interface to
External Device

~A

Data
Lines

Address
Lines

Control
Lines

Interface to
System Bus

ma Data Registers

~P| Status/Control Registers

10
Logic

External
Device
Interface
Logic

External
Device
Interface

Logic

Figure 7.3 Block Diagram of an 1/0 Module

Data

Status

Control

Data

Status

Control

I/O BUS and Interface Module

It defines the typical link between the processor and
several peripherals. The I/O Bus consists of data

lines, address lines and control lines.

I/0 BUS and Interface Module

Processor

- an
L] & -
Interface Interface Interface
Keyboard
and Printer Magnetic
display disk
terminal

Connection of 1/0 bus to input-output devices

Data line

Address line

Control line

/O Commands

There are four types of /O commands that an I/O module may
receive when it is addressed by a processor:
Control
- used to activate a peripheral and tell it what to do.
Test
- used to test various status conditions associated with
an I/O module and its peripherals.
Read
- causes the I/O module to obtain an item of data from
the peripheral and place it in an internal buffer.
Write
- causes the I/0O module to take an item of data from the

data bus and subsequently transmit that data item to the
peripheral.

Accessing 1/0O Devices

* 1/O devices accessed through 1/0 interface.

* Requirements for I/0O interface:
— CPU communication
— Device communication
— Data buffering
— Control and timing
— Error detection.

CPU Communication:

* Processor sends commands to the /O system
which are generally the control signals on the
control bus.

 Exchange of data between the processor and
the 1/0 interface over the data bus.

* Check whether the devices are ready or not.

Data Buffering:
* Data transfer rate is too high.

e Data from processor and memory are sent to
an /O interface, buffered and then sent to the
peripheral device at its data rate.

Error Detection:
* |/O interface is responsible for error detection
* Used to report errors to the processor.

* Types of errors:

— Mechanical, electrical malfunctions, bad disk
track, unintentional changes.

1/0 interface Block diagram

Data Register L

Data Data
Lines

Status/Control Register |g

Address Lines Status
—— Address [r— (—
Decoder > External
Device =repe——
Interface Control
Control Lines Logic
>

Data Register: holds the data being
transferred to or from the processor.

Status/Control Register: contains
information relevant to the operation.

Data and status/control registers: are
connected to the data bus.

Address decoder: enables the device to
recognize its address.

I/0 interface for Input Device

Address Lines

BUS

Data Lines

Control lines

Address Decoder

Control Circuits

l

Data & Status
Registers

A

Input Device

1/0
interfhce

1/0 interface for Output Device

Address Lines

BUS

Data Lines

R

Address Decoder

|

|
|

Control Circuits

Control lines

——

Data & Status
Registers

{

—

1

Output Device

I/O

inte-r]ce

1/0 interface Techniques

1/O Ports

* 4 registers - status, control, data-in, data-out

— Status - states whether the current command is
completed, byte is available, device has an error, etc

— Control - host determines to start a command or
change the mode of a device

— Data-in - host reads to get input
— Data-out - host writes to send output

* Size of registers - 1 to 4 bytes

1/0 devices can be interfaced to a computer

system 1/0O in 2 ways:

* Memory Mapped I/O

* |/O mapped /O

Two address One address space / Two address spaces

Memory Mapped 1/0

* No need of special /0O instructions.

* Memory related instructions are used for 1/O
related operations.

Memory Address

Space I/O address Space

/O Mapped I/O

* If we want to reduce the memory address
space, we allot a different 1/O address space,
apart from total memory space.

» Memory related instructions do not work here
»Processor use these mode only for 1/O Read, 1/O
Write.

Difference between Memory Mapped
/O & 1/O mapped I/O

Memory Mapped I/O I/O Mapped I/O

Memory & I/0 share the entire address | Processor provides separate address
range of processor range for memory & I/O

Processor provides more address lines Less address lines for accessing 1/O
for accessing memory

More Decoding is required Less decoding is required

Memory control signals used to control | 1/0 control signals are used to control
Read & Write I/O operations Read & Write 1/0O operations

Programmed I/O

* |/O operation means

— A data transfer between an 1/O device & memory
or

— Between 1/O device & Processor.

* If any 1/O operations are completely
controlled by processor, then the system is
said to be using “ Programmed 1/0”

— Processor has to check 1/O system periodically
until the operation completes =

— Microprocessor has to check if any device need
service.

Programmed 1/O

Address
Decoder

A

y

Service
& routine A
Int C?\ _
J - v
1 & Service
routine C
4 |
Int Z? _
@ J
Service
routine Z

|

Priority:

» The Routines assigns priority to the different
1/0O devices

» Port A is always checked 1°.
» Then Port B
» Then Port C

» Order may change by changing routine.

INTRODUCTION

INTERRUPT

INTERRUPT

Interrupt

~ Devices and programs occasionally need CPU
service but we can’ t predict when.

~ So for the interaction with CPU each device or a
program is allowed to give interrupt so that it can
be used as a signal to the processor.

~ Need a way for CPU to find out devices/programs
need attention

o LR L) eee—

Hardware Interrupt

Example:

- 5T

res

» An instruction cycle includes
= Fetch
= Decode
= Execute

> It is the basic operation cycle of a computer. It is
the process by which a computer retrieves a
program instruction from its memory,
determines what actions the instruction
requires, and carries out those actions. This
cycle is repeated continuously by the central
processing unit (CPU).

Without Interrupts
e Instruction fetch
e [nstruction execute

Fetch next Execute

AN

Instruction Instruction

With Interrupt
Instruction Fetch

Instruction Execute
Check the Interrupt

Execute
Interrupt Interrupt
Disable

Fetch

Execute

Instructio Instructio

n

Lo

Check for
Interrupt

Classes of Interrupt

Program

- Timer

1/0

- Hardware Failure

~ If there is an interrupt in instruction cycle then

It will trigger the interrupt handler.

The handler will stop the present instruction which is processing and
save its state in a PC register and load the state of the interrupt
program .

OS serves the interrupt from Interrupt Vector Table through Interrupt
Service Routine(Interrupt handler).

After processing the interrupt, interrupt handler will load the
instruction of previous saved process from the register, process will
start its processing where it’s left. This saving the old instruction
processing configuration and loading the new interrupt configuration
is also called as context switching.

[nterrupt Handling

User Program Interrupt Handler

Interrupt ——»
occurs here

Multiple Interrupts

1.Enabling and disabling interrupts

* A processor has the facility to enable and disable interrupts
as desired.

* When a device request the interrupt during the processor
service for another interrupt, the result cause the processor
enter into the infinite loop.

* This can be handled by the following 2 ways:

» The processor ignore the interrupt request line(INTR) until
the Interrupt Service Routine(ISR) 1s completed.

» This can be done by using interrupt-Disable as first
instruction and interrupt-Enable as the last instruction.

* The second option 1s processor automatically disable
interrupts before starting the execution of the ISR.

* The status register PS stored in the stack with PC value.

* The processor set this register bit I when the interrupt
accept and when a return instruction is executed, the
contents of the PS are cleared (0)and stored in the stack
again.

2.Handling Multiple Devices

When the number of devices 1nitiating interrupts.

For example, device X may request an interrupt while an
interrupt caused by device Y is being serviced.

Hence all the device using the common interrupt line.

Additional information require to identify the device that
activated the request.

When the two devices activated the line at the same time,
we must break up the tie and chose one the device request
among two. Some scheme should be used by the processor.

2.1Polling scheme

* The device that raises the interrupt will set one of the bit
(IRQ) 1n status register to 1.

* The processor will poll the devices to find which raised an
interrupt first.

Disadvantage:

* Time spend in interrogating the IRQ bits of the devices that
may not be requesting any service.

2.2Vectored interrupts

* Toreduce the time involved in the polling scheme, a device
requesting an interrupt may identify itself directly to the
processor.

* A device can send a special code to the processor over the
bus. The code is used to identify the device.

* [If the interrupt produces a CALL to a predetermined
memory location, which 1s the starting address of ISR, then
that address 1s called vectored address and such interrupts
are called vectored interrupts.

Introduction of
Direct Memory Access (DMA)

“DIRECT MEMORY ACCESS (DMA) IS A FEATURE OF
COMPUTERIZED SYSTEMS THAT ALLOWS CERTAIN
HARDWARE SUBSYSTEMS TO ACCESS MAIN
SYSTEM ~ MEMORY INDEPENDENTLY OF
THE CENTRAL PROCESSING UNIT (CPU)."

no
1 um’ P

| . .
A e ’ f—

* It is sometimes referred to as a channel. In an alternate
configuration, the DMA controller may be incorporated directly
into the 1/0 device.

/

(?‘;‘ (q'to

Disk/DMA . DMA
Controller Controller

L

e = . A
"

=

I I

° Durmg DMA transfer the CPU is idle and no control of the
memory buses.

/

DMA V5. NO DMA

When the CPU is using programmed The CPU initiates the transfer, does

input/output, it is typically fully other operations while the transfer
occupied for the entire duration of is in progress, and receives

the read or write operation, and is an interrupt from the DMA
thus unavailable to perform other controller when the operation is
work. done.

This feature is useful any time the CPU cannot
keep up with the rate of data transfer, or where
the CPU needs to perform useful work while
waiting for a relatively slow |/O data transfer.

Example: Reading from an |/O

device
Processor gives details to the DMA controller

~ Main memory buffer address

"Direction of transfer
(mamory — VO device, or vice versa)

the system bus.

. - —

¥ arhs

* It is completely eliminated by designing DMA interface so that
system bus cycles are stolen only when CPU is not actually
using system bus.

* This is also called as Transparent DMA

| "DMA DATA TRANSFER: BLOCK DIAGRAM

ADDRESS
S

ADDRESS BU;

MEMORY
DATA BUS

DATA BUS
A 4

CONTROL BUS CONTROL

HLDA HOLD | MEWW. MEME |’°

T DATA BUS
HRQ

DMA CONTROL BUS
CONTROLLER R 10w PERIPHERAL | SMART

IOR.IOW (eg DISK
£ pReq MEMW. MEWR DEVICE CONTROLLER)

DACKO A

Figure 2: Block diagram showing how a DMA controller operates in a microcomputer system

rol of its buses by placing

* DREQi (DMA request): Used to request a DMA transfer for a particular
DMA channel.

/i DACKi (DMA channel acknowledge): Acknowledges a channel DMA

 The DMA Control Register accepts commands from the CPU. It is
also treated as an O/P port by the CPU.

/ ° ha NMA Data Ranicta slde A TN Ara Intarmadinta Aata

| J | (¢
) -
atem e

o - ?EE SL'" » "
/LI 1 A

.".
AR Ao b

-

-y

T~ ,\'!'. B
-, Y --'% "AY MVArnce | .l".'.' oy
Ll ‘3!\ ;93" @ ‘% ’g,\-j‘\x" N 'a‘m\"

A

minates and processor regain control

Y bus.

¥V ~ 1l
wivinily
JU L
AR ke
— . oS s) it |

\

1\ CACHE COHERENCE PROBLEM

O X: old value éoul R L e Y
{: new value Gacia

\ Cache coherency refers to the inconsistency of data stored in
local caches of a shared resource and data stored in memory.

"Buses-1

* The bus protocol determines when a device may place
information on the bus, when it may load the data on
the bus into one of its registers, and so on.

* These rules are implemented by control signals that
indicate what and when actions are to be taken.

* Master or initiator- Device which initiate data
transfers

* Slave or target- Device addressed by master

/” R e /

‘Buses-2 Synchronous Bus

» All devices derive timing information from a control
line called the bus clock

* The timing diagram shows an idealized
representation of the actions that take place on the
bus lines.

Clock cycle

1o 7, 1

Figure 7.3 Timing of an input transfer on a synchronous bus. 59

// o
Buses-3 Synchronous Bus

* The sequence of signal events during an input (Read) operation.

* At time to, the master places the device address on the address lines and
sends a command on the control lines indicating a Read operation.

» Information travels over the bus.

* The clock pulse width, &1 - to, must be longer than the maximum
propagation delay over the bus. Also, it must be long enough to allow all
devices to decode the address and control signals, so that the addressed
device (the slave) can respond at time t1 by placing the requested input
data on the data lines.

* At the end of the clock cycle, at time t2, the master loads the data on the
data lines into one of its registers.

* To be loaded correctly into a register, data must be available for a period
greater than the setup time of the register.

* Hence, the period t2 — t1 must be greater than the maximum propagation
time on the bus plus the setup time of the master’s register.

" Buses-4 Synchronous Bus

* The exact times at which signals change state are
somewhat different from idealized representation,
because of propagation delays on bus wires and in the
circuits of the devices.

Buses-5 Synchronous Bus

— = Time

Bus clock

Seen by master
Address and
command

Data ()—

'pm

Seen by slave
Address and X X
command

J
Data .
'

N

S

Io 7 L]

Figure 7.4 A detailed timing diagram for the input transfer of Figure 7.3.

Buses-6 Synchronous Bus

* The master sends the address and command signals on the rising
edge of the clock at the beginning of the clock cycle (at to).
However, these signals do not actually appear on the bus until
t v largely due to the delay in the electronic circuit output from
the master to the bus lines.

* A short while later, at t,¢, the signals reach the slave. The slave
decodes the address, and at t1 sends the requested data.

* Here again, the data signals do not appear on the bus until ¢g.

* They travel toward the master and arrive at t. At t2, the master
loads the data into its register.

* Hence the period t2 - t,; must be greater than the setup time of
that register. The data must continue to be valid after 2 for a
period equal to the hold time requirement of the register.

. g/
“Buses-7 Synchronous Bus

Multiple-Cycle Data Transfer

» However, it has some limitations.

* Because a transfer has to be completed within one clock cycle, the
clock period, t2 - to, must be chosen to accommodate the longest
delays on the bus and the slowest device interface.

» This forces all devices to operate at the speed of the slowest device.

* To overcome these limitations, most buses incorporate control signals
that represent a response from the device. These signals inform the
master that the slave has recognized its address and that it is ready to
participate in a data transfer operation. They also make it possible to
adjust the duration of the data transfer period to match the response
speeds of different devices.

* This is often accomplished by allowing a complete data transfer
operation to span several clock cycles. Then, the number of clock cycles
involved can vary from one device to another.

PBuses8 SynchronousBue T

Multiple-Cycle Data Transfer

ime

Address X x
Command X X
Data ()

Slave-ready I I

Figure 7.5 An input transfer using multiple clock cycles.

“Buses-9 Synchronous Bus
Multiple-Cycle Data Transfer

* During clock cycle 1, the master sends address and command information on
the bus, requesting a Read operation.

* The slave receives this information and decodes it. It begins to access the
requested data on the active edge of the clock at the beginning of clock cycle 2.

* Due to the delay involved in getting the data, the slave cannot respond
imrlnediately. The data become ready and are placed on the bus during clock
cycle 3.

» The slave asserts a control signal called Slave-ready at the same time.

* The master, which has been waiting for this signal, loads the data into its
register at the end of the clock cycle.

* The slave removes its data signals from the bus and returns its Slave-ready
signal to the low level at the end of cycle 3.

* The bus transfer operation is now complete, and the master may send new
address and command signals to start a new transfer in clock cycle 4.

* If the addressed device does not respond at all, the master waits for some
predefined maximum number of clock cycles, then aborts the operation.

/ e — e

" Buses-10 Asynchronous Bus

* An alternative scheme for controlling data transfers on
a bus is based on the use of a handshake protocol
between the master and the slave.

* A handshake is an exchange of command and response
signals between the master and the slave.

Buses-10 Asynchronous Bus

* The master places the address and command
information on the bus. Then it indicates to all devices
that it has done so by activating the Master-ready line.

* This causes all devices to decode the address. The
selected slave performs the required operation and
informs the processor that it has done so by activating
the Slave-ready line.

* The master waits for Slave-ready to become asserted
before it removes its signals from the bus.

* In the case of a Read operation, it also loads the data
into one of its registers.

E— —

Buses-10 Asynchronous Bus

— = Time

Address
and command X

Master-ready I—\ H
Slave-ready ‘—’F : :I

Data \5()_

Bus cycle

Figure 7.6 Handshake control of data transfer during an input operation.

Buses-10 Asynchronous Bus

to—The master places the address and command information on
the bus, and all devices on the bus decode this information.

ti—The master sets the Master-ready line to 1 to inform the
devices that the address and command information is ready.
Sufficient time should be allowed for the device interface
circuitry to decode the address. The delay needed can be
included in the period t1 - to.

t2—The selected slave, having decoded the address and
command information, performs the required input operation
b?l placing its data on the data lines. At the same time, it sets the
Slave-ready signal to 1. If extra delays are introduced by the
interface circuitry before it places the data on the bus, the slave
must delay the Slave-ready signal accordingly. The period t2 - t1
depends on the distance between the master and the slave and
on the delays introduced by the slave’s circuitry.

Buses-11 Asynchronous Bus

* t3—The Slave-ready signal arrives at the master, indicating that
the input data are available on the bus. After a delay to the
master loads the data into its register. Then, it drops the Master-
ready signal, indicating that it has received the data.

* t4—The master removes the address and command information
from the bus. The delay between t3 and t4 is again intended to
allow for bus skew. Erroneous addressing may take place if the
address, as seen by some device on the bus, starts to change
while the Master-ready signal is still equal to 1.

* ts—When the device interface receives the 1-to-o transition of
the Master-ready signal, it removes the data and the Slave-ready
signal from the bus. This completes the input transfer.

Buses-12 Asynchronous Bus

— = Time

Address
and command

Data —{ /—t}
| /
Master-ready (—l b
Slave-ready T—I—/ -
to 1 1 13 1 15
— -
Bus cycle

Figure 7.7 Handshake control of data transfer during an output operation.

Interface Circuits

Interface circuits-1

e [/O interface consists of the circuitry required to connect
an I/O device to a computer bus.

e Side of the interface which connects to the computer has
bus signals for:

¢ Address,
e Data
¢ Control

e Side of the interface which connects to the I/O device has:

B [;aga ath and associated controls to transfer data between the interface and the
I evice.

» This side is called as a “port”.
e Ports can be classified into two:

¢ Parallel port,
 Serial port.

Interface circuits-2

e Parallel port transfers data in the form of a number of
bits, normally 8 or 16 to or from the device.

e Serial port transfers and receives data one bit at a time.

® Processor communicates with the bus in the same way,

whether it is a parallel port or a serial port.

* Conversion from the parallel to serial and vice versa takes place inside the
interface circuit.

Parallel port
_boai.

Processor

Address~

R/W

—_
Mastefready

Slave-ready
-

=

DATAIN

. SN

>

Input
interface

*Keyboard is connected to a processor using a parallel port.
*Processor is 32-bits and uses memory-mapped I/O and the asynchronous bus

protocol.

*On the processor side of the interface we have:

- Data lines.
- Address lines

- Control or R/W line.

- Master-ready signal and
- Slave-ready signal.

Data

Valid

Encoder
and
debouncing
circuit

Keyboard
switches

barallel port (contc

Data
AddressA DATAIN Data
Processor b D SN
Masterready Valid
Input e
Slave-read i :
Y interface

———————
Encoder |<e——
and
debouncing :
circuit .
-

Keyboard
switches

*On the keyboard side of the interface:
- Encoder circuit which generates a code for the key pressed.

- Debouncing circuit which eliminates the effect of a key bounce (a single key

stroke may appear as multiple events to a processor).
- Data lines contain the code for the key.

- Valid line changes from o to 1 when the key is pressed. This causes the code to

be loaded into DATAIN and SIN to be set to 1.

Input Interface Circuit oxn

D7

DO

Slave-
ready

RIW

Master
ready

A31

Al

AOD

°Oufput lines of DATAIN are

H— -
are connected to the data lines of
: . - | "“%u" the bus by means of 3 state drivers
et *Drivers are turned on when the
N Qo Lo processor issues a read signal and
the address selects this register.
\/1\1 == Status vaiid
»| flag
1 , . : —
*SIN signal is generated using a status flag circuit.
Pl «It is connected to line D, of the processor bus
ata using a three-state driver.
*Address decoder selects the input interface based

] ()

e

—_——

Address
decoder

on bits A, through A,,.

*Bit Ao determines whether the status or data
register is to be read, when Master-ready is

active.

*In response, the processor activates the Slave-ready
signal, when either the Read-status or Read-data

is equal to 1, which depends on line A,,

/

“Parallel port (contd..)

Data
Address > DATAOUT Data
Processor R/W = SOuUT Valid Printer
Masterready
= Output dle
Slave-ready interface i
-

*Printer is connected to a processor using a parallel port.
*Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.

*On the processor side:
- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

———

“Parallel port (contd.

Data
Address > DATAOUT Data
Processor R/W = SOuUT Valid Printer
=
Masterready
= Output dle
Slave-ready interface i
-

*On the printer side:
- Idle signal line which the printer asserts when it is ready to accept a character.
This causes the SOUT flag to be set to 1.
- Processor places a new character into a DATAOUT register.
- Valid signal, asserted by the interface circuit when it places a new character
on the data lines.

b7 b Q& = *Data lines of the processor bus are
; : i connected to the DATAOUT register
- o @ of the interface. :
- 5 it R *The status flag SOUT is connected
‘ to the data line D1 using a three-
4 sout ~ statedriver.
., N HARdCe : 'v“H *The three-state driver is turned on,
i ‘ i ‘ """ when the control Read-status line is
Read 1.
e Load- *Address decoder selects the output
interface using address lines A1
through A3
(W (w *Address line Ao determines whether
_ | the data is to be loaded into the
r»l.{i\: D"’J DATAOUT register or status flag is
ready to be read.
Ao . *If the Load-data line is 1, then the
& Valid line is set to 1.

.| decoder *If the Idle line is 1, then the status
Al - flag SOUT is set to 1.

AO

CA

f————= PB7

——e PB0

D7 Bus 1 —
— - AN e —
/ ’ DATAIN
"/" - D' =
Do ’ <}
SIN
Input
o status
DATAOUT
SOuUT
=
Slave- '

et

la— CB1

—= CB2

]

|/
=)

[
R/W { >
A3l —e
Address My-address
decode
A2

RS1

A0

=

RS0

>

*Combined I/O interface circuit.

*Address bits A2 through A3, that is

30 bits are used to select the overall
interface.

*Address bits A1 through Ao, that is, 2
bits select one of the three registers,
namely, DATAIN, DATAOUT, and

the status register.

*Status register contains the flags SIN and
SOUT in bits o and 1.

*Data lines PAo through PA7 connect the
input device to the DATAIN register.
*DATAOUT register connects the data
lines on the processor bus to lines PBo
through PB7 which connect to the output
device.

*Separate input and output data lines for
connection to an I/O device.

D7 <l -p—nP7
B Tt ——=Data lines to I/O devi trectional.
// gl . +Data lines P7 through Po can be used for
DO <] - ~po both input, and output.
' *In fact, some lines can be used for input &
= some for output depending on the pattern
1 in the Data Direction Register (DDR).
RATARAIT *Processor places an 8-bit pattern into a DDK
> *If a given bit position in the DDR is 1, the
corresponding data line acts as an output
= line, otherwise it acts as an input line.
Data *C1 and C2 control the interaction between
Eokietal the interface circuit and the I/O devices.
- *Ready and Accept lines are the handshake
control lines on the processor bus side, and
My-address — = are connected to Master-ready & Slave-ready
ggf e _ c1_ *Input signal My-address is connected to the
—__ | Raister o output of an address decoder.

RS0 ———
RIW ———»]
Ready ————»|
Accept —=—

select

and
control

INTR <=

*Three register select lines that allow up to 8
registers to be selected.

Serial port

e Serial port is used to connect the processor to I/O
devices that require transmission of data one bit at a
time.

e Serial port communicates in a bit-serial fashion on the

device side and bit parallel fashion on the bus side.
¢ Transformation between the parallel and serial formats is achieved with
shift registers that have parallel access capability.

__Input shift rgister

DATAIN
D7
+ DO
Y Y
My-address DATAOUT
—
RS1 1 1
—_—
R
@— Chip and
R/W register Output shift register
e select i b
Ready
Accept
-
Receving clock
———————
iINTR Status
B and

control

ransmission clock
—

rial =
ot nputshﬁregiszemlfpf%

Seria

e

at a time from the I/O device.
*Once all the 8 bits are received, the
contents of the input shift register are
loaded in parallel into DATAIN register.
*Output data in the DATAOUT register
are loaded into the output shift register.
*Bits are shifted out of the output shift
register and sent out to the I/O device one
bit at a time.
*As soon as data from the input shift reg.
are loaded into DATAIN, it can start
accepting another 8 bits of data.
*Input shift register and DATAIN registers
gre both used at input so that the input
ift register can start receiving another
set of 8 bits from the input device after
loading the contents to DATAIN, before
the processor reads the contents of
DATAIN. This is called as double-

buffering.

Serial port (contd..)

¢ Serial interfaces require fewer wires, and hence serial
transmission is convenient for connecting devices that are
physically distant from the computer.

® Speed of transmission of the data over a serial interface is
known as the “bit rate”.
 Bit rate depends on the nature of the devices connected.
* [n order to accommodate devices with a range of speeds, a
serial interface must be able to use a range of clock speeds.

» Several standard serial interfaces have been developed:

e Universal Asynchronous Receiver Transmitter (UART) for low-speed serial
devices.

e RS-232-C for connection to communication links.

Standard I/0 interfaces

* [/O device is connected to a computer using an interface
circuit.

* Do we have to design a different interface for every
combination of an I/O device and a computer?

* A practical approach is to develop standard interfaces and
protocols.

* A personal computer has:

* A motherboard which houses the processor chip, main memory and some 1/O
interfaces.

» A few connectors into which additional interfaces can be plugged.
* Processor bus is defined by the signals on the processor
chip.

* Devices which require high-speed connection to the processor are connected
directly to this bus.

Standard 1/0 interfaces (contd..)

® Because of electrical reasons only a few devices can be
connected directly to the processor bus.

e Motherboard usually provides another bus that can
support more devices.

» Processor bus and the other bus (called as expansion bus) are interconnected by
a circuit called “bridge”.

* Devices connected to the expansion bus experience a small delay in data
transfers.

e Design of a processor bus is closely tied to the architecture
of the processor.
* No uniform standard can be defined.

® Expansion bus however can have uniform standard

defined.

Standard I/0 interfaces (contd..)

* A number of standards have been developed for the
expansion bus.

e Some have evolved by default.
* For example, IBM’s Industry Standard Architecture.

* Three widely used bus standards:

e PCI (Peripheral Component Interconnect)
e SCSI (Small Computer System Interface)
e USB (Universal Serial Bus)

Standard I/ mces*(c%”)

Processor weln Bridge circuit translates

memo .
i signals and protocols from

/ processor bus to PCI bus.
Processor bus

Bridge
e ____—1EXpansionbuson
the motherboard
Additional SCSI Ethernet uUsSB ISA
memory controller Interface| | controller Interface
SCSI s / IDE
Video s
Disk CD-ROM
controller controller

s i

Disk 1 Disk 2 ROM Keyboard Game

PCI PCI PCI
Express x1 Express x16 Express x1 Rear /0O
slots slot slot panel shield

..........

PCI
slots
IDE/PATA
connector
b Vo anaaanmaanns
[|
SATA connectors: FDD 24-pin ATX

3Gb/s connector power connector

4-pin CPU
power
connector

CPU
socket:
LGA 775

Memory
slots:
dual
channel
DDR2

RJ45 Network

Port —_——
uUsSB 2.0
Ports : .Audio .
Parallel Port USB 3.0 Line in/out/mic
Ports
e 1l s
= @

PS/2 Port

evoosraMowse sermipore NS/ Uso20

Central & Bass Stereo
Speakers OuUT _ TS

Indication of speed connection

RJ45 LAN connector Side HDMI
Speakers connector
Indication of connection
eSATA
connectors
IEEE 13%4a
connector coxgeActor
L —
L ——
aiE—— e — — — ——

USB connectors S/PDIF Microphone

PCI BUS
(PERIPHERAL COMPONENT INTERCONNECT)

* Peripheral Component Interconnect ' S ts
* Introduced in 1992

* Low-cost bus

* Processor independent

* Plug-and-play capability

* In today’s computers, most memory transfers involve a burst of data rather

than just one word. The PCI is designed primarily to support this mode of
operation.

* The bus supports three independent address spaces: memory, [/O, and
configuration.

* We assumed that the master maintains the address information on the bus
until data transfer is completed. But, the address is needed only long enough
for the slave to be selected. Thus, the address is needed on the bus for one clock
cycle only, freeing the address lines to be used for sending data in subsequent
clock cycles. The result is a significant cost reduction.

* A master is called an initiator in PCI terminology. The addressed device that
responds to read and write commands is called a target.

Data transfer signals on the PCI bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a
transaction.

AD 32 address/data lines, which may be optionally

increased to 64.

C/BE# 4 command/byte-enable lines (8 for a 64-bit

IRD Y#, TRD Y# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device
recognized its address and

transfer transaction.

IDSEL# Initialization Device Select.

indicating

is ready

S A sy 3 4 5 6 P‘%"/"
/" a5 e N B [z

CLK

Frame#

ap —1—< Adress) (#1 X # X #3 X #4 }»—1
I I I I I

cBE# —1—< Cmnd X Byte enable et

IRDY#

TRDY#

DEVSEL#

A read operation on the PCI bus

Frame#

AD —+< Adress)

C/BE#

IRDY#

TRDY#

DEVSEL#

#2 X

#3 X #4 »—

——(Cmnd X

Byte enable

>_

A read operation on the PCI bus

-
FRAME# indicate the beginning of
a transaction.
Address on the AD lines

\Read on the C/BE# lines.

\

Jl" he initiator removes the address,

Frame# pigae from the AD lines
The selected target asserts
DEVSEL# to indicate recognized its

AD __< Adress> (#1 X #2 address and is ready to respond .

cBE# —1—< Cmnd X Byte enable —t

IRDY#

TRDY#

DEVSEL#

A read operation on the PCI bus

Frame#

o —CE R B E X w
| | | | |
;[Asserts IRDY# to indicate ready to

C/BES 1 uilic X receive data.
Target asserts TRDY# and begins to
send data.
IRDY#)
TRDY#
DEVSEL#

A read operation on the PCI bus

7 | 1 I_w::_z_
,A/(/—;";jf oy

may

:m target is not ready , it would
delay asserting TRDY# until it is

ready.

The entire burst of data need not
be sent in successive clock cycles.
Either the initiator or the target
a pause by
deactivating its ready signal, then
asserting it again when it is ready |

ﬁresume the transfer of data.)

introduce

_(

& =X

X

#3 X #4 »—t

T

IRDY#

TRDY#

DEVSEL#

\{mnd X

Byte enable

>___

A read operation on the PCI bus

transfer.

during the second-last word of the

FRAME# deactivates this signal\"=

IRDY#

TRDY#

DEVSEL#

S e 3 4 5 6
D e, S
=
I |
ess — #1 X #2 X #3 X #4)
| I I I I
——(Cmnd X Byte enable)

A read operation on the PCI bus

=) o= :2‘ 3 4 5 6
/f' 5 h\ﬁ""“ﬁf‘ = e ,__-7
= CLK
Frame#

o — sy — T X X O—

cBE# —1< Cmnd X Byte enable)

IRDY#

TRDY#

DEVSEL#

Target sends one more word then stops.
i After sending the fourth word, the target
A read operatlon on the PCI deactivates TRDY# and DEVSEL# and

disconnects its drivers on the AD lines.

~Device Configuration

* When an [/O device is connected to a computer, several actions are
needed to configure both the device and the software that
communicates with it.

* PCI incorporates in each [/O device interface a small configuration
ROM memory that stores information about that device.

* The configuration ROMs of all devices are accessible in the
configuration address space. The PCI initialization software reads these
ROMSs and determines whether the device is a printer, a keyboard, an
Ethernet interface, or a disk controller. It can further learn bout various
device options and characteristics.

* Devices are assigned addresses during the initialization process.

* This means that durin% the bus configuration operation, devices
cannot be accessed based on their address, as they have not yet been
assigned one.

* Hence, the configuration address space uses a different mechanism.

Each device has an input signal called Initialization Device Select,
IDSEL#

e Electrical characteristics:

e PCI ll)us has been defined for operation with either a 5 or 3.3 V power
supply

USB
(UNIVERSIAL SERIAL BUS,

USB

* Universal Serial Bus (USB) is an industry standard
developed through a collaborative effort of several
computer and communication companies, including
Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
Nortel Networks, and Philips.

* Speed

» Low-speed(1.5 Mb/s)

« Full-speed(12 Mb/s)

» High-speed(480 Mb/s)
* Port Limitation
* Device Characteristics

* Plug-and-play

‘Universal Serial Bus tree structure

Host computer

d(la/v(?ce delz/v%e dg/%e de'e/v%e

dé(/(?ce dg/cl)ce

* To accommodate a large number of devices that can be added or
removed at any time, the USB has the tree structure as shown in the
figure.

* Each node of the tree has a device called a hub, which acts as an
intermediate control point between the host and the I/O devices. At
the root of the tree, a root hub connects the entire tree to the host
computer. The leaves of the tree are the I/O devices being served (for
example, keyboard, Internet connection, speaker, or digital TV)

* In normal operation, a hub copies a message that it receives from its
upstream connection to all its downstream ports. As a result, a message
sent by the host computer is broadcast to all /O devices, but only the
addressed device wil? respond to that message. However, a message
from an I/O device is sent only upstream towards the root of the tree
and is not seen by other devices. Hence, the USB enables the host to
communicate with the I/O devices, but it does not enable these devices
to communicate with each other.

“Addressing

* When a USB is connected to a host computer, its root hub is attached to the
processor bus, where it appears as a single device. The host software communicates
with individual devices attached to the USB by sending packets of information,
which the root hub forwards to the appropriate device in the USB tree.

* Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit
address. This address is local to the USB tree and is not related in any way to the
addresses used on the processor bus.

* A hub may have any number of devices or other hubs connected to it, and
addresses are assigned arbitrarily. When a device is first connected to a hub, or
when it is powered on, it has the address o. The hardware of the hub to which this
device is connected is capable of detecting that the device has been connected, and
it records this fact as part of its own status information. Periodically, the host polls
each hub to collect status information and learn about new devices that may have
been added or disconnected.

* When the host is informed that a new device has been connected, it uses a
sequence of commands to send a reset signal on the corresponding hub port, read
information from the device about its capabilities, send configuration information
to the device, and assign the device a unique USB address. Once this sequence is
cgrclllpleted the device begins normal operation and responds only to the new
address.

/f = | V*;Q—“\q{f ——

SB Protocols

All information transferred over the USB is organized in packets, where
a packet consists of one or more bytes of information. There are many
types of packets that perform a variety of control functions.

The information transferred on the USB can be divided into two broad
categories: control and data.

* Control packets perform such tasks as addressing a device to initiate
data transfer, acknowledging that data have been received correctly, or
indicating an error.

e Data packets carry information that is delivered to a device.

A packet consists of one or more fields containinﬁ different kinds of
information. The first field of any packet is called the packet identifier,
PID, which identifies the type of that packet.

They are transmitted twice. The first time they are sent with their true
values, and the second time with each bit complemented

The four PID bits identify one of 16 different packet types. Some
control packets, such as ACK (Acknowledge), consist only of the PID

byte.

Bits

Bits

PID,

PID, | PID, | PID, | PO, | P, | PID, | PO,

(a) Packet identifier field

PID ADDR ENDP

CRC16

(b) Token packet, IN or OUT

0to 8192

16

PID

DATA

CRC16

(c) Data packet

Control packets used for
controlling data transfer
operations are called token
packets.

Figure 45. USB packet format.

Time

DataC

Token

A

Token
DataC

\/

Token
Data

ACK

ACK

ACK

Figure: An output
transfer

e T
Isochronous Traffic on USB

* One of the key objectives of the USB is to support the transfer of
isochronous data.

* Devices that generates or receives isochronous data require a time
reference to control the sampling process.

* To provide this reference. Transmission over the USB is divided into frames
of equal length.

* A frame is 1ims long for low-and full-speed data.

* The root hub generates a Start of Frame control packet (SOF) precisely
once every 1 ms to mark the beginning of a new frame.

* The arrival of an SOF packet at any device constitutes a regular clock signal
that the device can use for its own purposes.

* To assist devices that may need longer periods of time, the SOF packet
carries an 11-bit frame number.

* Following each SOF packet, the host carries out input and output transfers
for isochronous devices.

* This means that each device will have an opportunity for an input or
output transfer once every 1 ms.

USB Frames

Bits ' 8 I 11 l 5 I
E PID ranenumber chcsl

(a) SOF Packet

- 1-ms frame — =
s m] - - EECE]

S — Start-of-frame packet
Tn— Token packet, address = n
D — Data packet

A — ACK packet

(b) Frame example
Figure 4.47 USB frames.

Electrical Characteristics

*» The cables used for USB connections consist of four wires.

* Two are used to carry power, +5V and Ground.

e Thus, a hub or an I/O device may be powered directly from
the bus, or it may have its own external power connection.
* The other two wires are used to carry data.

* Different signaling schemes are used for different speeds of
transmission.
e At low speed, 1s and os are transmitted by sending a high

voltage state (5V) on one or the other o the two signal wires.
For high-speed links, differential transmission is used.

END

UNIT-1V

THE MEMORY SYSTEMS

Types of Internal Memory

The internal memory of a computer can be classified as RAM, ROM, and cache

memory.

Internal
Memory
i
RAM ROM Cache
DRAM PROM
SRAM EPROM

EEPROM

Some basic concepts

Maximum size of the Main Memory
byte-addressable
CPU-Main Memory Connection

Processor

k-bit

address bus

MAR

=

n-bit
data bus

MDR |G

>

e

Control lines
(R/W, MFC, etc.)

Memory

Up to 2 *addressable
locations

Word length= »n bits

Some basic concepts(Contd.,)

Measures for the speed of a memory:

An important design issue is to provide a
computer system with as large and fast a
memory as possible, within a given cost target.

Cache memory (to increase the effective speed).
Virtual memory (to increase the effective size).

Synchronous DRAMs

*DRAMSs whose operation is directly
Relresh : ‘ '
counter synchronized with a clock signal
U *The outputs of the sense circuits are

connected to a latch.
Row *During a Read operation, the
—_— address | 5> s | 3 Cell array contents of the cells in a row are
e it loaded onto the latches.
sldress —] *During a refresh operation, the
e 4 Cotumn [Resd/Write co.ntents of the cells are refreshed
ot decoder | D [circuiis & Jaiches without changing the contents of
the latches.
(} *Data held in the latches correspond
to the selected columns are transferred
{} to the output.
Data input Data output | *For a burst mode of operation,
s “E 1 successive columns are selected using
{\ column address counter and clock.
Vi CAS signal need not be generated
externally. A new data is placed during
raising edge of the clock

Column

{

Clock
RAS
CAS

R/W

Mode register

and
timing control

RERE:

CS

Dian

Synchronous DRAMs

Figue 5.9 Bom‘uodofhﬂﬂ""""mﬂ

Synchronous DRAMs

The timing diagram shows a timing diagram for a typical burst read of length 4
First, the row address is latched under the control of RAS

Memory takes 2 to 3 clock cycles to activate the selected row

The column address is latched under the control of CAS signal

After a delay of 1 clock cycle, the first set of data bits is placed in data lines

The SDRAM automatically increments the column address to access the next
three sets of bits in the selected row, which are placed on the data lines in the
next 3 clock cycles

SDRAMSs have built-in refresh circuitry

A part of the circuitry is a refresh counter, which provides the address of the rows
that are selected for refreshing

In a typical SDRAM, each row is refreshed at least every 64 ms
Commercial SDRAMs can be used with clock speeds above 100 MHz

Static memories

addresscy 19-bit internal chip address

==
| & [
— — B Sl — B o i e B oy [} = [oy
= o | [I T]
— m— —_ o - — == —
d d)| |
= _:.TJ-Lz === — |-

2K <% memory chip

19011 K-hit data
sddress $ G: inpuvoeta

LChip weletr

* Implement a memory unit of 2M
words of 32 bits each.

* Use 512x8 static memory chips.

* Each column consists of 4 chips.
* Each chip implements one byte
position.

* Achipis selected by setting its

* chip select control line to 1.

* Selected chip places its data on the
data output line, outputs of other
chips are in high impedance state.

* 21 bits to address a 32-bit word.
* High order 2 bits are needed to
select the row, by activating the
four Chip Select signals.

* 19 bits are used to access specific
byte locations inside the selected
chip.

Dynamic memories

Placing large memory systems directly on the
motherboard will occupy a large amount of space.

Also, this arrangement is inflexible since the memory system cannot be expanded easily.

Memory modules are an assembly of memory chips
on a small board that plugs vertically onto a single &
socket on the motherboard. =R a8tAN

Occupy less space on the motherboard.

Allows for easy expansion by replacement.

MEMORY SYSTEM

CONSIDERATIONS

The choice of RAM chip for the given application depends on several
factors

Foremost among these factors are the cost, speed, power dissipation,
and size of the chip

SRAM is only used when very fast operation is the primary requirement
Their cost and size are adversely affected by the complexity of the circuit
that realizes the basic cells

They are used mainly in cache memory

DRAM are the predominant choice for implementing computer main
memories

The high densities achievable in these chips make large memories
economically feasible

Memory controller

Recall that in a dynamic memory chip, to reduce the
number of pins, multiplexed addresses are used.
Address is divided into two parts:

However, a processor issues all address bits at the same
time.

In order to achieve the multiplexing, memory
controller circuit is inserted between the processor
and memory.

Memory controller (contd..)

Processor

Address
R/ W
o
Memory
Request controller
-
Clock

Row/Column
address

RAS

— - |

CAS o
R/W

=

CS
—
Clock =

Data

Memory

Rambus Memory

A very wide bus is expensive and requires a lot of space on the
motherboard

Alternative approach is to implement a narrow bus that is much faster
This bus is called as the Rambus

Key feature is the fast signaling method used to transfer information
between chips

It allows a clock frequency of 400 MHz

These chips use cell array based on DRAM technologies

Multiple banks of cell arrays used to access more than one word at a time
Original design of Rambus is to provide g data lines and number of
control and power supply lines

It competes directly with DDR SDRAM technology

ROM

Read Only Memory

ROM
Read Only Memory

What is ROM?

Read-only memory (ROM) is a type of storage medium that
permanently stores data on personal computers (PCs) and other
electronic devices.

* |tis type of internal memory.

* The data and instructions in ROM are stored by the
manufacturer at the time of its manufacturing. This
data and programs cannot be changed or deleted after
wards.

* The data or instructions stored in ROM can only be
read but new data or instructions cannot be written
into it. This is the reason why it is called Read Only
Memory.

Introduction

» Read-only memory (ROM) is a class of storage
medium used in computers and other electronic
devices. Data stored in ROM cannot be modified, or
can be modified only slowly or with difficulty.

» Read Only Memories (ROM) or Programmable
Read Only Memories (PROM) have:

N nput lines,
M output lines, and
2N decoded minterms.

» Fixed AND array with 2N outputs implementing all
N-literal minterms.

» Programmable OR Array with M outputs
lines to form up to M sum of minterm
expressions.

» A program for a ROM or PROM is simply a
multiple-output truth table

» Ifa 1 entry, a connection is made to the
corresponding minterm for the corresponding
output.

» 1f a 0, no connection is made

Can be viewed as a memory with the inputs as

addresses of data (output values), hence
ROM or PROM names!

Types of ROM

There are five basic ROM types:

ROM - Read Only Memory

PROM - Programmable Read Only Memory

EPROM - Erasable Programmable Read Only Memory

EEPROM - Electrically Erasable Programmable Read Only Memory
Flash EEPROM Memory

Why ROM is non-volatile?

ROM stores data and instructions permanently.

» When the power is turned off, the instructions stored in ROM are
not lost. That is the reason ROM is called non-volatile memory.

Read-Only-Memory

Bit line

Word line

Not connected to store a 1
Connected to store a 0

P —————

Figure 12. A ROM cell.

Read only memory (ROM)

¥'ROM holds programs and data permanently even when computer
is switched off

v'Data can be read by the CPU in any order so ROM is also direct
access

v The contents of ROM are fixed at the time of manufacture

v Stores a program called the bootstrap loader that helps start up
the computer

v' Access time of between 10 and 50 nanoseconds

ROMS VS. RAMS

There are some important differences between ROM and RAM.
ROMs are “non-volatile”™—data is preserved even without
power. On the other hand, RAM contents disappear once
power 1s lost.

ROMs require special (and slower) techniques for writing, so
they’re considered to be “read-only” devices.

Some newer types of ROMs do allow for easier writing, although

the speeds still don’t compare with regular RAMs.

MP3 players, digital cameras and other toys use
CompactFlash, Secure Digital, or Memory Stick cards for
non-volatile storage.

Many devices allow you to upgrade programs stored in “flash
ROM.”

READ-ONLY MEMORY (ROM)
N input bits
2" words by M bits
Implement M arbitrary functions of N variables

Example 8 words by S bits:

g A—— ROM
e B—— 8words
C——1 1 xDHbils

| LHLERUEN

F, F, Fz F, F,

5 Output Lines

ROM INTERNAL STRUCTURE

n Inputs

Lines "
‘[_:‘ n bit - Memory Array

decoder ; 2" words x m bits

—»

AR

m Outputs Lines

ROM MEMORY ARRAY

m=A8'C’

m,=A"8"C

A==

3108 el i
B —— decoder m=A8C ™,
m,=AB'C
¢/ /ity
m =ABC’
m,=ABC

L
m,=A"8C’ ~
L

PROM

* PROM stands for Programmable Read Only Memory.

* This form of ROM is initially blank. The user or manufacturer can
write data/program on it by using special devices.

* However, once the program or data is written in PROM chip, it
cannot be changed.

* |f there is an error in writing instructions or data in PROM, the error
cannot be erased rather PROM chip becomes unusable.

EPROM

* EPROM stands for Erasable Programmable Read Only
Memory.

* This form of ROM is also initially blank,

* The user or manufacturer can write program or data on it by
using special devices.

* Unlike PROM, the data written in EPROM chip can be erased
by using special devices and ultraviolet rays.

* New data can also be added.
* When EPROM is in use, its contents can only be read.

EEPROM

* EEPROM stands for Electrically Erasable Programmable Read Only
Memory.

* This kind of ROM can be written or changed with the help of
electrical devices.

* So data stored in this type of ROM chip can be easily modified.

Flash Memory

* Flash memory is an electronic non-volatile computer storage medium
that can be electrically erased and reprogrammed. Introduced by
Toshiba in 1984, flash memory was developed from EEPROM
(electrically erasable programmable read-only memory).

The Memory System
Cache Memories

What is Cache Memory?

© Cache memory is a small, high-speed RAM buffer located
between the CPU and main memory.

“ Cache memory holds a copy of the instructions (instruction
cache) or data (operand or data cache) currently being used

by the CPU.

“ The main purpose of a cache is to accelerate your computer
while keeping the price of the computer low,

CACFIE MEMOR

»Small amount of fast memory
» Sits between normal main memory and CPU
»May be located on CPU chip or module

Main Memory

Placement of Cache in computer

Magnetic I
DRk | /o Main

Processor Memory

Magnetic ke—n

= II

Cache
Memory K——>|

CPU

N

Cacne Organizzdon

Address

Address
buffer

Control Control System
bus

Processor

Data

Woriing OfF Cacne Memory

» The CPU initially looks in the Cache for the data it needs
~ If the data is there, it will retrieve it and process it

~ If the data is not there, then the CPU accesses the system memory and
then puts a copy of the new data in the cache before processing it

~ Next time if the CPU needs to access the same data again, it will just

retrieve the data from the Cache instead of going through the whole
loading process again

Main Memory

Hit Ratio

¥ The ratio of the total number of hits divided by the total
CPU accesses to memory (i.e. hits plus misses) is called Hit
Ratio.

© Hit Ratio = Total Number of Hits / (Total
Number of Hits + Total Number of
Miss)

Example

A system with 512 x 12 cache and 32 K x 12 of

main memory.

Main Memory
32K x 12

Cache Memory
512 x12

CPU

i,

3

L
).

Types of Cache Mapping
Direct Mapping
Associative Mapping

Set Associative Mapping

1. Direct Mapping

The direct mapping tcchniquc is simplc and inexpensive to implement.

When the CPU wants to access data from memory, it places a address, The
index field of CPU address is used to access address.

The tag ficld of CPU address is compared with the associated tag in the word
read Irom the cache.

If the tag-bits of CPU address is matched with the tag-bits of cache, then there
is a hit and the required data word is read from cache.

If there is no match, then there is a miss and the required data word is stored in
main memory. It is then transferred from main memory to cache memory with
the new tag.

1. Direct Mapping

6 bits 9 bits
Tag Index
00 000 32K x 12
Octal l Main Memory
address
Address= 15 bits
7 777 Data =12 bits

Octal

addressl

l

000

777

512 x12

Cache Memory

Address= 9 bits
Data =12 bits

1. Direct Mapping

Main Memory Cache Memory
Address Data
00 000 5670 Index Tag Data
00 777 7523 .---------.:’ __________ 000 | 00 5670
01 000 1256 | :
- E __________ 777 00 7523
e 000 | 01 1256
01 777 3321
67 125 7432 2on - .
77 777 5432 crmeeenat 777 77 5432

2. Associative Mapping

“ An associative mapping uses an associative memory.
“ This memory is bcing accessed using its contents.

“ Each line of cache memory will accommodate the address
(main memory) and the contents of that address from the
main memaory.

“ That is why this memory is also called Content Addressable
Memory (CAM). It allows each block of main memory to be
stored in the cache.

2. Associative Mapping

Y Address Data Address Data
14567 3023 14567 3023
PU address
(15-its) 23473 | 2495 23473 2495
2 h
Argument register |—p 56982 2354 56982 2354
2
31567 0256 31567 0256
43222 3452
14566 7653
737
Associative Cache Memory 64232 8009
45614 1984
98766 3142
11132 5823

Main Memory

3. Set Associative Mapping

¥ That is the easy control of the direct mapping cache and the
more flexible mapping of the fully associative cache.

“ In set associative mapping, each cache location can have
more than one pair of tag + data items.

“ That is more than one pair of tag and data are residing at the
same location of cache memory. If one cache location is
holding two pair of tag + data items, that is called 2-way set

associative mapping.

3. Two-Way Set Associative
Mapping

Main Memory Cache Memory
Address DA o ST
00 000 5670 |...... | Tag; DB Index Tig Dan
o 00 | 35670 ooo |01 | 1256
00 666 7523
01 000 1256 |o---i
1 - 00 | 7523 666 |01 | s3n s
03 | 2 02 | 6520 :
01 666 5321 -
51 | 1560 677 |41 | 2560
67 125 7432
77 | 54923 777 66 | 4423
777717 5423

...

N

Replacement Algorithms of
Cache Memory

chlaccmem algurilhms are used when there are no available sracc in a cache in which
to place a data. Four of the most common cache rcplaccmcm a gorilhms are described
below:

Least Recently Used (LRU):

® The LRU algurithm selects lor rcplaccmcm the item that has been least rc(w:mly used by
the CPU.

First-In-First-Out (FIFO):
® The FIFO algorilhm selects for rcplaccmcm the item that has been in the cache from the
longcst time,

Least Frequently Used (LRU):

® The LRU algorilhm selects for replaccmcnt the item that has been least l'rcqucmly used
by the CPLUL

Random:
* The random algm-ithm selects for replacement the item randomly.

Writing into Cache

“ When memory write operations are performed, CPU first
writes into the cache memory. These modifications made by
CPU during a write operations, on the data saved in cache,
need to be written back to main memory or to auxiliary
memory.

“ These two popular cache write policies (schemes) are:
® Write-Through
® Write-Back

Write-Through

 In a write through cache, the main memory is updated each
time the CPU writes into cache.

“ The advantagc of the writc-through cache is that the main
memory always contains the same data as the cache contains.

“ This characteristic is desirable in a system which uses direct
Memory access scheme of data transfer. The 1/0 devices
communicating through DMA receive the most recent data.

Write-Back

“ In a write back scheme, only the cache memory is updated
during a write operation.

¥ The updated locations in the cache memory are marked by a
flag so that later on, when the word is removed from the
cache, it is copied into the main memory.

“ The words are removed from the cache time to time to make

room for a new block of words.

Direct mapping

P—
\'.Hh
memory q Block 0 1
Cuache Block |
’ 4 ek D
J = — J: 4:
= Block 1
S T —————— Y
<:| | Block 127 |
:: >~ "
[T L "ltxk |‘is IJ
— I’] Block 127 ﬂ e T
J: a:

‘ K 258
fag Block Word L=L %:{’;,l

| L=

[5 | 7]+ L Block 256 |

Block 257

Miin memory address

Associative mapping

‘.‘1\')0.'
'-l_n.' —é——;!
4 Block O |
g
Block |
-~ g s
>~ ‘(

g ! Block 127

Tag Word

12 !xl

M memory address

ey e
Main i
lm‘n‘ul.'vr_\ ﬁ Block 0]
Block |

A\
'\ ¥

Block 129

]
]

Block 257

Set-Associative mapping

“.l. h(- \' Em
ain -
v] memory B Block O |
tig W Blxk 0 J
o — Block |
- g Block | l
t 3

A\
'\ ¥

e | Block 2

tag Block 3 <:]
. >

Block 63

T Block 64
s A ‘_—-‘n~
=L Block 126 Block 65
— Block 127 J_ l
fag Block Word —
s | | 4 | Block 128

i '] u
M memory address | Block 129

3\

The Memory System

Secondary Storage

Read/Write
head

s Sl

AcCCess
mechanism

(a) Mechanical structure

e
I

- - -
- -

One bt

Magnetic Hard Disks

Magnetizing
current
l Magnetic
J)‘ukt‘
’r
‘I?-A -
I{—n'—L
= =
Air L _,,\,_; < —
gap 3 .
Magnetic .
thin film Disk
(b) Read/Write head detall Disk drive
0 | ‘N a Disk controller
‘ \

(c) Bit representation by phase encoding

Organization of Data on a Disk

g - Sector 0, track |
Sector 3, track »

Sector 0, track O

Figure 5.30. Organization of one surface of a disk.

Access Data on a Disk

Sector header

Following the data, there is an error-
correction code (ECQ).

Formatting process

Difference between inner tracks and outer
tracks

Access time — seek time / rotational delay
(latency time)
Data buffer/cache

Disk Controller

Processor Main memory

System bus

Disk controller

Disk drive Disk drive

Figure 5.31. Disks connected to the system bus.

Disk Controller

Seek
Read
Write
Error checking

RAID Disk Arrays

Redundant Array of Inexpensive Disks
Using multiple disks makes it cheaper for
huge storage, and also possible to improve
the reliability of the overall system.

RAIDo — data striping

RAID1 —identical copies of data on two disks
RAID2, 3, 4 —increased reliability
RAIDg — parity-based error-recovery

Optical Disks

{a) Cross-sechion

" Laumnd

Refloction Rellection

No reflection

Sousce Detecton Source Detector Source e ecton

(b) Transiton from pd 1o land

{c) Stored binary patiern

Figure 5,32, Optical disk

Optical Disks

CD-ROM
CD-Recordable (CD-R)
CD-ReWritable (CD-RW)
DVD

DVD-RAM

Magnetic Tape Systems

File File
mark = - File
{ mark

. , Tor9Y
I ; bits

- - —
File gap Record Record Record Record
gap gap

Figure 5.33. Organization of data on magnetic tape.

END

UNIT-V

PROCESSING UNIT

Overview

e Instruction Set Processor (ISP)
e Central Processing Unit (CPU)

e A typical computing task consists of a series
of steps specified by a sequence of machine
Instructions that constitute a program.

e An Iinstruction iIs executed by carrying out a
sequence of more rudimentary operations.

Fundamental
concepts

Fundamental Concepts

e Processor fetches one instruction at a time and
perform the operation specified.

e Instructions are fetched from successive memory
ocations until a branch or a jump instruction is
encountered.

e Processor keeps track of the address of the memory
location containing the next instruction to be fetched
using Program Counter (PC).

e Instruction Register (IR)

Executing an Instruction

e Fetch the contents of the memory location pointed
to by the PC. The contents of this location are
loaded into the IR (fetch phase).

IR «— [[PC]]

e Assuming that the memory Is byte addressable,
iIncrement the contents of the PC by 4 (fetch phase).

PC «— [PC] + 4

e Carry out the actions specified by the instruction Iin
the IR (execution phase).

MDR HAS
TWO INPUTS
AND TWO
OUTPUTS

Internal processor

Processor Organization

bus
N
PC
Instruction
Aﬁgégss e decoder and
- MAR control logic
Memory
bus
MDR
Data
lines . IR
Y
Constant 4 RO
MUX
- R(n- 1)
ALU
- TEMP
\
7 -

Figure 7.1. Single-bus organization of the datapath inside a processor.

Datapath

Executing an Instruction

e Transfer a word of data from one processor
register to another or to the ALU.

e Perform an arithmetic or a logic operation
and store the result in a processor register.

e Fetch the contents of a given memory
location and load them into a processor
register.

e Store a word of data from a processor
register into a given memory location.

Register Transfers

R iin

Internal processor
bus

Constant4

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Zout

-]

vV

000000
00000,

Register Transfers

e All operations and data transfers are controlled by the processor clock.

Bus
S—
D Q
1
|—> Q
Clock

Figure 7.3. Input and output gating for one register bit.

Performing an Arithmetic or
Logic Operation

e TheALU is a combinational circuit that has no
Internal storage.

e ALU gets the two operands from MUX and bus.
The result is temporarily stored in register Z.

e What is the sequence of operations to add the
contents of register R1 to those of R2 and store the
result in R3?

Rlout, Yin
R2out, SelectY, Add, Zin
Zout, R3in

Fetching a Word from Memory

e Address into MAR; issue Read operation; data into MDR.

Memory-bus Internal processor
data lines bus
N\ N\
_————— X X ——
MDR
o
V V

Figure 7.4. Connection and control signals for register MDR.

Fetching a Word from Memory

YV V.V V V @

The response time of each memory access varies
(cache miss, memory-mapped I/O,...).

To accommodate this, the processor waits until it
receives an indication that the requested operation
has been completed (Memory-Function-Completed,
MFC).

Move (R1), R2

MAR « [R1]

Start a Read operation on the memory bus
Wait for the MFC response from the memory

Load MDR from the memory bus
R2 «— [MDR]

Timing

Clock

MAR;,
Assume MAR
IS always available agqress
on the address lines

of the memory bus.
Read

MR
MDRjne

Data

Wait for the MFC response from the memory

MFC

MDRout

|—— 1 | 2 -] 3 ——|

[MAR[R]
X

Start a Read operation on the memory bus

(—

Load MDR from the memory bus | “I_

R2 « [MDR]

Figure 7.5. Timing of a memory Read operation.

Execution of a Complete
Instruction

e Add (R3), R1
e Fetch the Instruction

e Fetch the first operand (the contents of the
memory location pointed to by R3)

e Perform the addition
e Load the result into R1

Architecture

Internal processor

X

bus

VAN

'
R

L= 1
i |
X

Riout

Yin _|—I—|
el

I Y |
Constant4
f
Selectﬂux /

Figure 7.2. Input and output gating for the registers in Figure 7.1.

]

Zout

A\

Execution of a Complete

Instruction

Add (R3), R1

PC
Step Action Adress
Ines | VAR
1 PCOUta MAR i , Read, SeleCt4,Add, Zin Mek:]mory
us
2 ZOUt) PCIn ’ Yln ’ WMF C —— MDR
Data
3 MDR out » IRin fines
4 R3out , MARin , Read Y
5 Rlout , Yin , WMF C Constant 4
6 MDR ot , SelectY, Add, Z;, UX
7 Zout, R1lin, End
A
ALU
Figure 7.6. Control sequencefor execution of the instruction Add (R3),R1. \
A

o000 N
o090 ®
L LR
0
@
Internal processor
bus
VAN
Instruction
-~ decoder and
control logic
- IR
RO
- R(n- 1)
- TEMP

Figure 7.1. Single-bus organization of the datapath inside a processor.

Execution of Branch
Instructions

e Abranch instruction replaces the contents of
PC with the branch target address, which is
usually obtained by adding an offset X given
In the branch instruction.

e The offset X Is usually the difference between
the branch target address and the address
Immediately following the branch instruction.

e Conditional branch

Execution of Branch
Instructions

Step Action

1 PCout, MAR in, Read, Select4, Add, 7.,
2 Zout, PCin, Yin, WMF C

3 MDR .., IR,

4 Offset-field-of-IR out, Add, 7.

5 Z oy, PCin, End

Figure 7.7. Control sequence for an unconditional branch instruction.

Multiple-Bus Organization

Bus A BusB BusC

Incrementer

Register
file

Constant 4

A
ALU R
B

Instruction
decoder

Memory bus Address
data lines lines

Figure 7.8. Three-bus organization of the datapath.

Multiple-Bus Organization

e Add R4, R5, R6

Step Action

1 PCout, R=B, MAR in, Read, IncPC

2 WME C

3 MDR outB, R=B, IR in

4 R4outA = R5o0utB SelectA, Add, R6in, End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,

for the three-bus organization in Figure 7.8.

Hardwired Control

Overview

e T0 execute Instructions, the processor must
have some means of generating the control
signals needed in the proper sequence.

e Two categories: hardwired control and
microprogrammed control

e Hardwired system can operate at high speed,;
but with little flexibility.

Control Unit Organization

Clock CLK Control step
oc - counter
.-q_
I—— - External
inputs
q_
Decoder/
IR . encoder
a | il ——
-————] Condition
- E codes
I E—

Figure 7.10. Control unit organization.

Detalled Block Description

K
Clock [~ Control step
counter
Step decoder
Il |
T, T, see T,
INS1 -
L ———— -+——— External
| INS, : inputs
1 . -
Instruction -
: decoder . Encoder -
* * -] Condition
. s codes
INSH -
Figure7.11. Separation of the decoding and encoding functions.

*0 0
o000
L L LR
L L
*®

*0 0
o000
L L LR
L L
*®

Generating Z,, :

o Z,=T,+T¢«ADD + T, *BR + ...

Branch Add

Figure 7.12. Generation of the Z,, control signal for the processor in Figure 7.1.

Generating End

e ENd :T7

«ADD + Ts * BR+ (Ts* N+ T, * N) * BRN +...

Branch<0

Add Branch

N

W V’

/ ‘

Ty

End

Figure 7.13. Generation of the End control signal.

*0 0
o000
L L LR
L L
*®

A Complete Processor

U

U

Instruction Integer Floating-point
unit unit unit
Instruction Data
cache cache

e

Bus interface

I

=

Processor

>

|

Main
memory

{

System bus

Figure 7.14.

Input/
Output

Block diagram of a complete processor.

*0 0
o000
L L LR
L L
*®

END

