
COMPUTER ARCHITECTURE AND

ORGANIZATION.

UNIT-1
Presented by

Dr.K.RAJKAMAL,

Assoc.Prof,

Dept of ECE,

KHIT.

BASIC STRUCTURE OF COMPUTERS

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

Information Handled by a Computer

• Instructions/machine instructions
 Govern the transfer of information within a computer as well

as between the computer and its I/O devices

 Specify the arithmetic and logic operations to be performed

 Program

• Data
 Used as operands by the instructions

 Source program

• Encoded in binary code – 0 and 1

Memory Unit

• Store programs and data

• Two classes of storage
 Primary storage
 Fast

 Programs must be stored in memory while they are being executed

 Large number of semiconductor storage cells

 Processed in words

 Address

 RAM and memory access time

 Memory hierarchy – cache, main memory

 Secondary storage – larger and cheaper

Arithmetic and Logic Unit (ALU)

• Most computer operations are executed in
ALU of the processor.

• Load the operands into memory – bring them
to the processor – perform operation in ALU –
store the result back to memory or retain in
the processor.

• Registers

• Fast control of ALU

Control Unit

• All computer operations are controlled by the control
unit.

• The timing signals that govern the I/O transfers are also
generated by the control unit.

• Control unit is usually distributed throughout the
machine instead of standing alone.

• Operations of a computer:
 Accept information in the form of programs and data through an input

unit and store it in the memory
 Fetch the information stored in the memory, under program control, into

an ALU, where the information is processed
 Output the processed information through an output unit
 Control all activities inside the machine through a control unit

Connection Between the Processor
and the Memory

Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU

R
n 1-

R1

R0

MAR

n general purpose
registers

Registers

 Instruction register (IR)

 Program counter (PC)

 General-purpose register (R0 – Rn-1)

 Memory address register (MAR)

 Memory data register (MDR)

BUS STRUCTURES

SOFTWARE

Computer

Performance

Performance

 The most important measure of a computer is

how quickly it can execute programs.

 Three factors affect performance:

 Hardware design

 Instruction set

 Compiler

Performance

 Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions.

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.

Performance

 The processor and a relatively small cache

memory can be fabricated on a single

integrated circuit chip.

 Speed

 Cost

 Memory management

Processor Clock

 Clock, clock cycle, and clock rate

 The execution of each instruction is divided

into several steps, each of which completes

in one clock cycle.

 Hertz – cycles per second

Basic Performance Equation

 T – processor time required to execute a program that has been
prepared in high-level language

 N – number of actual machine language instructions needed to
complete the execution (note: loop)

 S – average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

 R – clock rate

 Note: these are not independent to each other

R

SN
T




How to improve T?

Pipeline and Superscalar

Operation

 Instructions are not necessarily executed one after
another.

 The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

 Pipelining – overlapping the execution of successive
instructions.

 Add R1, R2, R3

 Superscalar operation – multiple instruction
pipelines are implemented in the processor.

 Goal – reduce S (could become <1!)

Clock Rate

 Increase clock rate
 Improve the integrated-circuit (IC) technology to make

the circuits faster

 Reduce the amount of processing done in one basic step
(however, this may increase the number of basic steps
needed)

 Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

CISC and RISC

 Tradeoff between N and S

 A key consideration is the use of pipelining

 S is close to 1 even though the number of basic steps

per instruction may be considerably larger

 It is much easier to implement efficient pipelining in

processor with simple instruction sets

 Reduced Instruction Set Computers (RISC)

 Complex Instruction Set Computers (CISC)

Compiler

 A compiler translates a high-level language program

into a sequence of machine instructions.

 To reduce N, we need a suitable machine instruction

set and a compiler that makes good use of it.

 Goal – reduce N×S

 A compiler may not be designed for a specific

processor; however, a high-quality compiler is

usually designed for, and with, a specific processor.

Performance Measurement

 T is difficult to compute.

 Measure computer performance using benchmark programs.

 System Performance Evaluation Corporation (SPEC) selects and
publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

 Compile and run (no simulation)

 Reference computer








n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

THE HISTORY OF COMPUTER DEVELOPMENT

Chapter 2. Machine

Instructions and

Programs

Objectives

 Machine instructions and program execution,

including branching and subroutine call and return

operations.

 Number representation and addition/subtraction in

the 2’s-complement system.

 Addressing methods for accessing register and

memory operands.

 Assembly language for representing machine

instructions, data, and programs.

 Program-controlled Input/Output operations.

Instruction and

Instruction

Sequencing

“Must-Perform” Operations

 Data transfers between the memory and the

processor registers

 Arithmetic and logic operations on data

 Program sequencing and control

 I/O transfers

Register Transfer Notation

 Identify a location by a symbolic name

standing for its hardware binary address

(LOC, R0,…)

 Contents of a location are denoted by placing

square brackets around the name of the

location (R1←[LOC], R3 ←[R1]+[R2])

 Register Transfer Notation (RTN)

Assembly Language Notation

 Represent machine instructions and

programs.

 Move LOC, R1 = R1←[LOC]

 Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

 Single Accumulator

 Result usually goes to the Accumulator

 Accumulator has to be saved to memory quite

often

 General Register

 Registers hold operands thus reduce memory

traffic

 Register bookkeeping

 Stack

 Operands and result are always in the stack

Instruction Formats

 Three-Address Instructions

 ADD R1, R2, R3 R1 ← R2 + R3

 Two-Address Instructions

 ADD R1, R2 R1 ← R1 + R2

 One-Address Instructions

 ADD M AC ← AC + M[AR]

 Zero-Address Instructions

 ADD TOS ← TOS + (TOS – 1)

 RISC Instructions

 Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Three-Address

1. ADD R1, A, B ; R1 ← M[A] + M[B]

2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1  R2

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Two-Address

1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1  R2

6. MOV X, R1 ; M[X] ← R1

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 One-Address

1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← AC + M[B]

3. STORET ; M[T] ← AC

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← AC + M[D]

6. MUL T ; AC ← AC  M[T]

7. STOREX ; M[X] ← AC

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 Zero-Address

1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ←

(C+D)(A+B)

8. POP X ; M[X] ← TOS

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 RISC

1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1  R3

8. STOREX, R1 ; M[X] ← R1

Using Registers

 Registers are faster

 Shorter instructions

 The number of registers is smaller (e.g. 32

registers need 5 bits)

 Potential speedup

 Minimize the frequency with which data is

moved back and forth between the memory

and processor registers.

Instruction Execution and

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8. A program for C  [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute

Page 43

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straight-line program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

Branching

N,R1Move

NUMn

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop

Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

Condition Codes

 Condition code flags

 Condition code register / status register

 N (negative)

 Z (zero)

 V (overflow)

 C (carry)

 Different instructions affect different flags

Conditional Branch

Instructions

 Example:

 A: 1 1 1 1 0 0 0 0

 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

THANK YOU

COMPUTER ARCHITECTURE AND

ORGANIZATION.

UNIT-II
Presented by

Dr.K.RAJKAMAL,

Assoc.Prof,

Dept of ECE,

KHIT.

Addressing

Modes

UNIT-II

Generating Memory Addresses

⚫ How to specify the address of branch target?

⚫ Can we give the memory operand address

directly in a single Add instruction in the loop?

⚫ Use a register to hold the address of NUM1;

then increment by 4 on each pass through

the loop.

Addressing Modes

⚫ Implied

⚫ AC is implied in “ADD M[AR]” in “One-Address”

instr.

⚫ TOS is implied in “ADD” in “Zero-Address” instr.

⚫ Immediate

⚫ The use of a constant in “MOV R1, 5”, i.e. R1 ←

5

⚫ Register

⚫ Indicate which register holds the operand

Opcode Mode ...

Addressing Modes
⚫ Register Indirect

⚫ Indicate the register that holds the number of the

register that holds the operand

MOV R1, (R2)

⚫ Autoincrement / Autodecrement

⚫ Access & update in 1 instr.

⚫ Direct Address

⚫ Use the given address to access a memory

location

R1

R2 = 3

R3 = 5

Addressing Modes

⚫ Indirect Address

⚫ Indicate the memory location that holds the

address of the memory location that holds the

data

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

100

101

102

103

104

0

1

2

Addressing Modes

⚫ Relative Address

⚫ EA = PC + Relative Addr

AR = 100

1 1 0 A

PC = 2

+

Could be Positive or
Negative

(2’s Complement)

Addressing Modes

⚫ Indexed

⚫ EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1 1 0 A

XR = 2

+

Could be Positive or
Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

Addressing Modes

⚫ Base Register

⚫ EA = Base Register + Relative Addr

100

101

102

103

104

BR = 100

0 0 0 A

AR = 2

+

Could be Positive or
Negative

(2’s Complement)

Usually points to
the beginning of

an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

Addressing Modes

⚫ The different
ways in which
the location of
an operand is
specified in
an instruction
are referred
to as
addressing
modes.

Name Assem bler syn tax Addressing function

Immediate #V alue Op erand = Value

Register R i EA = R i

Absolute (Direct) LOC EA = LOC

Indirect (R i) EA = [R i]
(LOC) EA = [LOC]

Index X(R i) EA = [R i] + X

Base with index (R i ,R j) EA = [R i] + [R j]

Base with index X(R i ,R j) EA = [R i] + [R j] + X
and offset

Relative X(PC) EA = [PC] + X

Autoincremen t (R i)+ EA = [R i] ;
Incremen t R i

Autodecrement (R i) Decremen t R i ;
EA = [R i]

−

Indexing and Arrays

⚫ Index mode – the effective address of the operand

is generated by adding a constant value to the

contents of a register.

⚫ Index register

⚫ X(Ri): EA = X + [Ri]

⚫ The constant X may be given either as an explicit

number or as a symbolic name representing a

numerical value.

⚫ If X is shorter than a word, sign-extension is needed.

Indexing and Arrays

⚫ In general, the Index mode facilitates access

to an operand whose location is defined

relative to a reference point within the data

structure in which the operand appears.

⚫ Several variations:

(Ri, Rj): EA = [Ri] + [Rj]

X(Ri, Rj): EA = X + [Ri] + [Rj]

Relative Addressing

⚫ Relative mode – the effective address is determined

by the Index mode using the program counter in

place of the general-purpose register.

⚫ X(PC) – note that X is a signed number

⚫ Branch>0 LOOP

⚫ This location is computed by specifying it as an

offset from the current value of PC.

⚫ Branch target may be either before or after the

branch instruction, the offset is given as a singed

num.

Additional Modes

⚫ Autoincrement mode – the effective address of the operand is
the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

⚫ (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

⚫ Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0

Basic

Input / Output

Operations

I/O

⚫ The data on which the instructions operate

are not necessarily already stored in memory.

⚫ Data need to be transferred between

processor and outside world (disk, keyboard,

etc.)

⚫ I/O operations are essential, the way they are

performed can have a significant effect on the

performance of the computer.

Program-Controlled I/O

Example

⚫ Read in character input from a keyboard and
produce character output on a display screen.

➢ Rate of data transfer (keyboard, display, processor)

➢ Difference in speed between processor and I/O device
creates the need for mechanisms to synchronize the
transfer of data.

➢ A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

Program-Controlled I/O

Example

DATAIN DATAOUT

SIN SOUT

Key board Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers

- Flags

- Device interface

Program-Controlled I/O

Example

⚫ Machine instructions that can check the state

of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

Program-Controlled I/O

Example

⚫ Memory-Mapped I/O – some memory

address values are used to refer to peripheral

device buffer registers. No special

instructions are needed. Also use device

status registers.

READWAIT Testbit #3, INSTATUS

Branch=0 READWAIT

MoveByte DATAIN, R1

Program-Controlled I/O

Example

⚫ Assumption – the initial state of SIN is 0 and the

initial state of SOUT is 1.

⚫ Any drawback of this mechanism in terms of

efficiency?

⚫ Two wait loops→processor execution time is wasted

⚫ Alternate solution?

⚫ Interrupt

Stacks & Queues

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

0

1

2

102

202

201

200

100

101

Stack Organization

⚫ Memory Stack

⚫ PUSH

SP ← SP – 1

M[SP] ← DR

⚫ POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

Reverse Polish Notation

⚫ Infix Notation

A + B

⚫ Prefix or Polish Notation

+ A B

⚫ Postfix or Reverse Polish Notation (RPN)

A B +

A  B + C  D A B  C D  +
RPN

(2) (4)  (3) (3)  +

(8) (3) (3)  +

(8) (9) +

17

Reverse Polish Notation

⚫ Example

(A + B)  [C  (D + E) + F]

(A B +) (D E +) C  F +

Reverse Polish Notation

⚫ Stack Operation

(3) (4)  (5) (6)  +

PUSH 3

PUSH 4

MULT

PUSH 5

PUSH 6

MULT

ADD

3

4

12

5

6

30

42

Additional Instructions

Logic

Instructions,

shift and Rotate

Instructions

Component of Instructions

Logical Shifts

⚫ Logical shift – shifting left (LShiftL) and shifting right
(LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift r ight LShiftR #2,R0

(a) Logical shift left LShiftL #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .

Arithmetic Shifts

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Ar ithmetic shift right AShiftR #2,R0

R0

. . .

Rotate

Figure 2.32. Rotate instructions.

CR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate right without carry RotateR #2,R0

(a) Rotate left without carry RotateL #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with carry RotateRC #2,R0

R0

. . .

. . .

(b) Rotate left with carry RotateLC #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

Multiplication and Division

⚫ Not very popular (especially division)

⚫ Multiply Ri, Rj

Rj ← [Ri] х [Rj]

⚫ 2n-bit product case: high-order half in R(j+1)

⚫ Divide Ri, Rj

Rj ← [Ri] / [Rj]

Quotient is in Rj, remainder may be placed in R(j+1)

Assembly Language

Type of

Instructions

Arithmetic and Logic

Instructions, Branch

Instructions

Types of Instructions

⚫ Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

Data Manipulation Instructions

⚫ Arithmetic

⚫ Logical & Bit Manipulation

⚫ Shift

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Negate NEG

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC

Enable interrupt EI

Disable interrupt DI

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare

(Subtract)
CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

Mask

Conditional Branch

Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV Branch if no overflow V = 0

UNIT-III

INPUT/OUTPUT ORGANIZATION

Accessing I/O Devices

Introduction of
Direct Memory Access (DMA)

PCI BUS
(PERIPHERAL COMPONENT INTERCONNECT)

Data transfer signals on the PCI bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a

transaction.

AD 32 address/data lines, which may be optionally

increased to 64.

C/BE# 4 command/byte-enable lines (8 for a 64-bit bus).

IRD Y#, TRD Y# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has

recognized its address and is ready for a data

transfer transaction.

IDSEL# Initialization Device Select.

A signal whose name ends with the symbol # is asserted when in the low voltage state.

USB

(UNIVERSIAL SERIAL BUS)

UNIT-IV

THE MEMORY SYSTEMS

UNIT- V

PROCESSING UNIT

Overview

 Instruction Set Processor (ISP)

 Central Processing Unit (CPU)

 A typical computing task consists of a series

of steps specified by a sequence of machine

instructions that constitute a program.

 An instruction is executed by carrying out a

sequence of more rudimentary operations.

Fundamental

Concepts

Fundamental Concepts

 Processor fetches one instruction at a time and

perform the operation specified.

 Instructions are fetched from successive memory

locations until a branch or a jump instruction is

encountered.

 Processor keeps track of the address of the memory

location containing the next instruction to be fetched

using Program Counter (PC).

 Instruction Register (IR)

Executing an Instruction

 Fetch the contents of the memory location pointed

to by the PC. The contents of this location are

loaded into the IR (fetch phase).

IR ← [[PC]]

 Assuming that the memory is byte addressable,

increment the contents of the PC by 4 (fetch phase).

PC ← [PC] + 4

 Carry out the actions specified by the instruction in

the IR (execution phase).

Processor Organization

Data
lines

Address

lines

Memory
bus

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

IR

TEMP

R0

ALU
control

lines

Rn - 1

Internal processor
bus

Control signals

Instruction

decoder and

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Datapath

MDR HAS

TWO INPUTS

AND TWO

OUTPUTS

Executing an Instruction

 Transfer a word of data from one processor
register to another or to the ALU.

 Perform an arithmetic or a logic operation
and store the result in a processor register.

 Fetch the contents of a given memory
location and load them into a processor
register.

 Store a word of data from a processor
register into a given memory location.

Register Transfers

BA

Z

Y

ALU

Z in

R iin

R i

R iout

Y in

Internal processor
bus

Constant 4

MUX

Z out

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Performing an Arithmetic or

Logic Operation

 The ALU is a combinational circuit that has no

internal storage.

 ALU gets the two operands from MUX and bus.

The result is temporarily stored in register Z.

 What is the sequence of operations to add the

contents of register R1 to those of R2 and store the

result in R3?

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Fetching a Word from Memory

 Address into MAR; issue Read operation; data into MDR.

MDR

Memory-bus
data lines

Figure 7.4. Connection and control signals for register MDR.

Internal processor
busMDRoutMDRoutE

MDRinMDRinE

Figure 7.4. Connection and control signals for register MDR.

Fetching a Word from Memory

 The response time of each memory access varies
(cache miss, memory-mapped I/O,…).

 To accommodate this, the processor waits until it
receives an indication that the requested operation
has been completed (Memory-Function-Completed,
MFC).

 Move (R1), R2
 MAR ← [R1]

 Start a Read operation on the memory bus

 Wait for the MFC response from the memory

 Load MDR from the memory bus

 R2 ← [MDR]

Timing

Figure 7.5. Timing of a memory Read operation.

1 2

Clock

Address

MR

Data

MFC

Read

MDRinE

MDRout

Step 3

MARin

Assume MAR

is always available

on the address lines

of the memory bus.

R2 ← [MDR]

MAR ← [R1]

Start a Read operation on the memory bus

Wait for the MFC response from the memory

Load MDR from the memory bus

Execution of a Complete

Instruction

 Add (R3), R1

 Fetch the instruction

 Fetch the first operand (the contents of the

memory location pointed to by R3)

 Perform the addition

 Load the result into R1

Architecture

BA

Z

Y

ALU

Zin

Riin

Ri

Riout

Yin

Internal processor
bus

Constant 4

MUX

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Execution of a Complete

Instruction

Step Action

1

2

3

4

5

6

7

PCout , MAR in , Read, Select4,Add, Zin

Zout , PCin , Yin , WMF C

MDR out , IR in

R3out , MAR in , Read

R1out , Yin , WMF C

MDR out , SelectY, Add, Zin

Zout , R1in , End

Data
lines

Address
lines

Memory
bus

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Figure 7.6. Control sequencefor execution of the instruction Add (R3),R1.

Sub

Internal processor
bus

IR

TEMP

R0

ALU
control

lines

Control signals

Rn - 1

Instruction

decoder and

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Add (R3), R1

Execution of Branch

Instructions

 A branch instruction replaces the contents of

PC with the branch target address, which is

usually obtained by adding an offset X given

in the branch instruction.

 The offset X is usually the difference between

the branch target address and the address

immediately following the branch instruction.

 Conditional branch

Execution of Branch

Instructions

Step Action

PC out , MAR in , Read, Select4, Add,

Z out, PC in , Y in , WMF C

MDR out , IR in

1

2

3

4

5

Z in

Offset-field-of-IR out, Add,

Z out, PC in , End

Z in

Figure 7.7. Control sequence for an unconditional branch instruction.

Multiple-Bus Organization
Bus A Bus B Bus C

Memory bus

data lines

Figure 7.8. Three-bus organization of the datapath.

Instruction

decoder

PC

Register

file

Constant 4

MDR

A

ALU R

B

M
U

X

Incrementer

Address

lines

MAR

IR

Multiple-Bus Organization

 Add R4, R5, R6

Step Action

1 PC out, R=B, MAR in , Read, IncPC

2

3

4

WMF C

MDR outB , R=B,

R4 outA , R5 outB ,

IR in

SelectA, Add, R6 in , End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,

for the three-bus organization in Figure 7.8.

Hardwired Control

Overview

 To execute instructions, the processor must

have some means of generating the control

signals needed in the proper sequence.

 Two categories: hardwired control and

microprogrammed control

 Hardwired system can operate at high speed;

but with little flexibility.

Control Unit Organization

Figure 7.10. Control unit organization.

CLK
Clock

IR
Decoder/

encoder

Control step
counter

Control signals

Condition
codes

External
inputs

Detailed Block Description

External
inputs

Figure 7.11. Separation of the decoding and encoding functions.

Encoder

Reset
CLK

Clock

Control signals

Run End

Condition

codes

Step decoder

Control step
counter

IR

T1 T2 Tn

Instruction

decoder

INS1

INS2

INSm

Generating Zin

 Zin = T1 + T6 • ADD + T4 • BR + …

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T1

AddBranch

T4 T
6

Generating End

Figure 7.13. Generation of the End control signal.

 End = T7 • ADD + T5

Add

T7

Branch

• BR + (T5 • N + T4 • N) • BRN +…

Branch<0

T5

End

N N

T4T5

A Complete Processor

Instruction

unit

Integer

unit

Floating-point

unit

Instruction

cache

Data

cache

Bus interface

Main
memory

Input/
Output

System bus

Processor

Figure 7.14. Block diagram of a complete processor.

