TUTORIAL QUESTIONS

Subject: Digital Logic Design

Unit No.	Sl.No.	Questions	Bloom's Taxonomy level	Mapped with CO
I	1.	Convert (i) (615.25) ${ }_{8}$ to (? $)_{10},(?)_{2} \&(?)_{16}$. (ii) $(12.125)_{10}$ to $(?)_{8},(?)_{2} \&(?)_{16}$. (iii) (1101.111) $)_{2}$ to $(?)_{10},(?)_{8} \&(?)_{16}$. (iv) (6A5.B5) ${ }_{16}$ to (?) ${ }_{10},(?)_{2} \&(?)_{8}$.	3	CO 1
	2.	lutions of quadratic equation $x^{2}-11 x+22=0$ are $x=3 \& x-6 \quad x=3 \& x-6$ Identify the base of the system.	2	CO 1
	3.	ent $-45,+45,-65 \&+65$ in (i)sign magnitude form (ii) sign 1's complement form (iii) sign 2's complement form.	4	CO 1
	4.	te using Add and Subtract in BINARY (i) 1111 \& 1010 (ii) 100100 \& 10110	8	CO 1
	5.	$28)_{10}-(15)_{10}$ using 6 -bit 2 's complement subtraction.	5	CO 1
	6.	(i) 5250-321 (ii) $3570-2100$ (iii) 20-100 using 9's complement subtraction and 10's complement subtraction.	6	CO 1
	7.	(i) $3250_{10}-72532_{10}$ (ii) $72532_{10}-3250_{10}$ using 10 's complement subtraction and what did you infer from results.	7	CO 1
	8.	rithmetic operations indicated below and verify answers if left most position is sign bit and negative numbers are in 2 's complement form (i) $101011+111000$ (ii) $111001-001010$	9	CO 1
	9.	$\begin{aligned} & \text { (i) } 3250_{8}-72532_{8} \text { (ii) } 72532_{10}-3250_{10} \text { using } 7 \text { 's } \\ & \text { complement subtraction and } 16 \text { 's complement } \\ & \text { subtraction. what did you infer from results. } \\ & \hline \end{aligned}$	7	CO 1
	10.	(i) $3250_{8}-72532_{8}$ (ii) $72532_{10}-3250_{10}$ using 1 's complement subtraction and 10 's complement subtraction.	10	CO 1
	11.	pe 2's complement form and 2's complement form of subtraction with example.	1	CO 1
	12.	er 2's complement form and solve $3250_{10}-72532_{10}$.	8	CO 1
II		t basic Boolean theorems and properties and give proofs of each property and theorem.	2	CO 2
	2.	de that AND-OR network is equivalent to (i)NAND-NAND network and (ii) NOR-NOR network.	8	CO 2
	3.	y universal gates? Why are they called so?	7	CO 2
	4.	ent XOR \& XNOR using Universal gates.	4	CO 2
	5.	$\begin{aligned} & \text { the following equations into standard sop } \\ & 3, C, D)=A A^{\prime} B+B C+C D+A C D \\ & B, C, D)=\left(A+B^{\prime}+C\right)(A+D)\left(B^{\prime}+C^{\prime}\right)(A+B+C) \end{aligned}$	5	CO 2
	6.	the following equations into canonical pos	6	CO 2

		(iii) FULL ADDER (iv) FULL SUBTRACTOR		
	2.	Explain 4 bit ripple adder/subtractor with suitable example.	7	CO 4
	3.	Design (i) 4bit magnitude comparator (ii) 5bit magnitude comparator	10	CO 4
	4.	Summarize the following code converters (i) GRAY-BINARY (ii) BINARY-BCD (iii) $\mathrm{BCD}-\mathrm{XS} 3$ (iv) XS3-BINARY (v) INARY-GRAY	8	CO 4
	5.	Design (i) octal to binary encoder (ii) 4 bit priority encoder	9	CO 4
	6.	Reproduce HALF SUBTRACTOR and FULL ADDER using (i) MUX (ii) DEMUX (iii) DECODER	2	CO 4
	7.	Apply decoder and external gates for following (i) $\begin{gathered} \mathrm{F}_{1}=X^{\prime} Y^{\prime} Z^{\prime}+X Z \\ \mathrm{~F}_{2}=X Y^{\prime} Z^{\prime}+X^{\prime} Y \\ \mathrm{~F}_{3}=X^{\prime} Y^{\prime} Z^{\prime}+X Y \end{gathered}$ (ii) $\begin{gathered} \mathrm{F}_{1}=\sum(0,1,3,6,7) \\ \mathrm{F}_{2}=\sum(0,2,4,7) \\ \hline \end{gathered}$	5	CO 4
	8.	Represent following using LOGIC GATE (i) 3 to 8 decoder (ii) 4 to 16 mux (iii) 1×16 demux	4	CO 4
	9.	Analyze following using (i) 4 input mux (ii) 8×1 mux (iii) 3 to 8 decoder (iv) 2 to 4 decoder $F_{1}=\sum(0,1,3,6,7)$	7	CO 4
	10.	Apply (i) 4 input mux (ii) 8×1 mux (iii) 16×1 mux for following $\mathrm{F}_{1}=\sum(0,1,3,4,8,9,15)$	6	CO 4
	11.	Convert 4 to 16 decoder into demux	3	CO 4
V		the operation of (a) SR latch using NOR gates (b) Gated D latch using NAND gates	7	CO5
	2.	h the operation of negative edge triggered D flip-flop when $\mathrm{CP}=1$.	7	CO5
	3.	is RACE AROUND condition? How can we eliminate it? Explain MASTER SLAVE JK flip-flop and state its advantages.	2	CO5
	4.	2 the operation of positive edge triggered JK flip-flop in detail.	3	CO5
	5.	uish combinational \& sequential logic circuits?	8	CO5
	6.	et different methods used to trigger a flip-flop?	6	CO5
	7.	flip-flop? Design basic flip-flop circit with NAND gates.	1	CO5
	8.	EXCITATION tables and TRUTH tables of (a) D (b) T (c) JK (d) SR flip-flops.	10	CO5

	9.	hine characteristic equations of (a) D (b) T (c) JK (d) SR flip-flops.	5	CO5
	10.	the following terms with respect to flip-flops (a)Setup time (b) Hold time (c) Propagation delay (d) Preset (e) Clear (f) Latch	8	CO5
	11.	t the following flip-flops (a) JK to D (b) T to D (c) D to SR (d) SR to JK (e) T to SR	4	CO5
VI		uish Asynchronous \& Synchronous sequential logic circuits?	8	CO6
	2.	eat diagram explain operation of (a) 3 bit universal shift register. (b) 4 bit controlled buffer register.	7	CO6
	3.	$\begin{aligned} & \text { te Johnson's counter using a } 2 \text { bit shift register. } \\ & \text { Draw waveforms and list applications of shift } \\ & \text { register. } \end{aligned}$	5	CO6
	4.	pe about parallel in serial out shift register. How to load data word $\mathrm{ABCD}=1101$ in the 4 bit bidirectional shift register in shift left mode.	2	CO6
	5.	a register for left \& right shift of data for 10110101.	9	CO6
	6.	ntiate ring counter and twisted ring counter. Draw and explain about 4 bit ring counter.	8	CO6
	7.	h about synchronous ripple counter and compare merits and demerits.	3	CO6
	8.	h about 4 bit ripple down counter using positive edge triggered flip-flop.	4	CO6
	9.	ripple counter. Design BCD ripple counter.	1	CO6
	10.	1 about working of 4 bit asynchronous counter.	7	CO6
	11.	(a) mod-12 synchronous up counter using ' T ' flip-flop. (b) mod-10 synchronous down counter using 'JK' flip-flop. (c) mod-6 synchronous up counter using 'D' flip-flop. (d) mod-6 synchronous down counter using 'SR' flip-flop.	10	CO6
	12.	ter has 14 stable states 0000 to 1101 .if input frequency is 50 KHz Compute it's output frequency?	6	CO6

TUTORIAL OUESTIONS

Subject: Computer Graphics

	UNIT - I	Blooms taxonomy	Mapping with outcome
1	Explain the Bresenham's line drawing algorithm	4	CO2
2	Explain the midpoint circle drawing algorithm. Assume 10 cm as the radius and co-ordinate origin as the center of the circle	4	
3	Explain (a) random and raster scan devices (b) primitives used for filling	3	
4	Explain about filled area primitives	3	
5	Explain D viewing pipeline in detail	3	
6	Explain Cohen-Sutherland's line clipping algorithm.	4	
7	Derive the viewing Transformation matrix in detail	6	
8	Explain polygon clipping algorithm	3	
9	Explain the different 2D transformations	4	
10	Explain the about the lines of attribute primitives?	3	
UNIT - II			
1	Explain about parallel and perspective projection in detail?	9	CO2
2	Discuss the concept of three dimensional object representations?	8	
3	Explain curved line and splines	9	
4	Explain about quadric surface in detail?	9	
5	Discuss about the concept of Visualization of data sets?	7	
6	Explain about 3D Transformation in detail?	3	
7	Explain the concept of 3D viewing in detail?	4	
8	What are the methods of visible surface detection?	2	
9	What is back face detection ?give one example	1	
10	Write the concept of painter's method?	1	
UNIT - III			
1	What is the importance of graphics programming?	2	CO3
2	Write short note on the following color models: I. RGB II. YIQ III. CMY IV. HSV	2	
3	What is computer animation? give one example	1	
4	Explain about general computer animation techniques?	3	
5	Discuss about raster animation in detail?	9	
6	Discuss about key frame systems?	4	
7	What are basic graphics primitives?	2	
8	Write the concept of drawing three dimensional objects?	2	
9	Write the concept of drawing three dimensional scenes?	2	
10	What is animation sequence?	2	
UNIT - IV			
1	What is rendering? give one example	1	
2	What is shading ?give one example	1	
3	Explain the concept of shading models?	4	
4	Discuss the concept of flat and smooth shading?	7	
5	Write the concept of adding textures to faces?	2	

6	Write the concept of adding shadows of objects?	9	CO4
7	Discuss about the concept of building a camera in a program?	9	
8	Explain the concept of creating shaded objects?	3	
9	Discuss about rendering textures?	3	
10	Discuss about drawing shadows?	2	
UNIT - V			
1	Discuss about the concept of Fractals and self similarity?	3	CO5
2	Explain about the concept of peano curves?	9	
3	What is creating image by iterated functions?	2	
4	What are Mandelbrot sets? Give example?	4	
5	Explain about Julia sets? Give example?	3	
6	Explain about Random Fractals? Give example?	4	
UNIT - VI			
1	What is meant by intersecting rays?	2	CO6
2	Give the relationship between intersecting rays and primitives?	2	
3	Write the concept of adding surface textures?	9	
4	What is reflection and transference?	2	
5	Write the concept of Boolean operation on objects?	2	

