TUTORIAL QUESTIONS Subject: Digital Logic Design

Unit	Sl.No.	Questions	Bloom's	Mapped with
No.	1		Taxonomy level	CO
	1.	Convert (i) $(615.25)_8$ to $(?)_{10}$, $(?)_2$ & $(?)_{16}$. (ii) $(12.125)_{10}$ to $(?)_8$, $(?)_2$ & $(?)_{16}$. (iii) $(1101.111)_2$ to $(?)_{10}$, $(?)_8$ & $(?)_{16}$. (iv) $(6A5.B5)_{16}$ to $(?)_{10}$, $(?)_2$ & $(?)_8$.	3	CO 1
	2.	lutions of quadratic equation $x^2 - 11x + 22 = 0$ are $x = 3 & x - 6$ $x = 3 & x - 6$ Identify the base of the system.	2	CO 1
	3.	ent -45,+45,-65&+65 in (i)sign magnitude form (ii) sign 1's complement form (iii) sign 2's complement form.	4	CO 1
	4.	te using Add and Subtract in BINARY (i) 1111 & 1010 (ii) 100100 & 10110	8	CO 1
	5.	28) ₁₀ - (15) ₁₀ using 6-bit 2's complement subtraction.	5	CO 1
I	6.	(i) 5250-321 (ii)3570-2100 (iii) 20-100 using 9's complement subtraction and 10's complement subtraction.	6	CO 1
	7.	(i) 3250_{10} - 72532_{10} (ii) 72532_{10} - 3250_{10} using 10's complement subtraction and what did you infer from results.	7	CO 1
	8.	answers if left most position is sign bit and negative numbers are in 2's complement form (i)101011+111000 (ii)111001-001010	9	CO 1
	9.	(i) 3250_8 - 72532_8 (ii) 72532_{10} - 3250_{10} using 7's complement subtraction and 16's complement subtraction. what did you infer from results.	7	CO 1
	10.	(i) 3250 ₈ -72532 ₈ (ii) 72532 ₁₀ -3250 ₁₀ using 1's complement subtraction and 10's complement subtraction.	10	CO 1
	11.	be 2's complement form and 2's complement form of subtraction with example.	1	CO 1
	12.	er 2's complement form and solve 3250_{10} - 72532_{10} .	8	CO 1
		t basic Boolean theorems and properties and give proofs of each property and theorem.	2	CO 2
	2.	de that AND-OR network is equivalent to (i)NAND-NAND network and (ii) NOR-NOR network.	8	CO 2
II	3.	y universal gates? Why are they called so?	7	CO 2
	4.	ent XOR & XNOR using Universal gates.	4	CO 2
	5.	the following equations into standard sop B,C,D)= A'B+BC+CD'+ACD B,C,D)= (A+B'+C) (A+D) (B'+C') (A+B+C)	5	CO 2
	i		1	1

		b C D)= A'D+DC+CD'+ACD	ı	1
		B,C,D)= A'B+BC+CD'+ACD B,C,D)= (A+B+C) (A+D) (B'+C') (A+B+C)		
		B,C,D)= (A+B+C) (A+D) (B'+C') (A+B+C)		
		Represent the following functions using (i) NAND		
	7.	gates (ii) NOR gates	3	CO 2
		$F_1 = A(B+CD)+(BC)$		
		$F_2 = WX' + X'Y(Z + W')$	0	GO 4
	8.	Conclude ((AB)'+A'+AB)'=0	8	CO 2
	9.	Reduce the following Boolean expressions	9	CO 2
		AB'(C+BD)+A'B'A'B'C+(A+B+C')'+A'B'C'D	-	
		Write the complement of the following Boolean		
	10.	expressions	10	CO 2
	10.	X'YZ+XZ	10	
		XY+X(WZ+WZ')		
	11.	State the Demorgan's theorems and simplify the	1	CO 2
		expression. (((AB)'+ABC)'+A(B+AB'))'.	1	
	12.	Reduce {(CD)'+A}'+A+CD+AB.	7	CO 2
		Apply K-MAP		
		(i)f(a,b,c,d)= \sum (0,2,3,6,7)+d(8,10,11,15)	5	CO 3
		(ii) $f(w,x,y,z) = \pi(4,5,6,7,8,12) \varphi(1,2,3,9,11,14)$		
		Apply K-MAP and implement using NAND gates		
	2.	(i)f(a,b,c,d)= $\sum (1,2,4,6,7,8,11,12,13)$ to POS form.	6	CO 3
		(ii) $f(w,x,y,z) = \pi(1,3,7,11,15) \varphi(0,2,5)$ to SOP form.	-	
	3.	Analyze $Y = \sum m$		
		(3,6,7,8,10,12,14,17,19,20,21,24,25,27,28) using	7	CO 3
		K-Map method.	,	
		Write minimal SOP and minimal POS expressions		
		for the following function	9	CO 3
		$F(A,B,C,D) = \sum_{i=1}^{n} m(0,1,1,5,8,9,10).$		
	5.	Solve the following Boolean expression using	10	
		X-NOR and NOR gates		CO 3
		F=AB'CD'+A'BCD'+AB'C'D+A'BC'D.		
Ш	6.	Consider K-MAP and simplify		
		$f(a,b,c,d)=\sum (0,1,3,4,5,6,7,8,9,10,12,14)$	8	CO 3
		$f(a,b,c)=\pi(0,2,4,6)$		
		Modify using K-MAP and implement using AOI		
		logic	_	
	7.	$f(a,b,c,d)=\sum (1,2,4,6,7,8,11,12,13)$ to POS form.	3	CO 3
		$f(w,x,y,z)=\pi(1,3,7,11,15) \varphi(0,2,5)$ to SOP form		
		Represent the following Boolean expression using		
	8.	X-OR and OR gates	4	CO 3
	0.	F=AB'CD'+A'BCD'+AB'C'D+A'BC'D.		
Í		Reproduce $Y=\sum (0,1,4,5,16,17,21,25,29)$ using		
	9.	K-Map method.	1	CO 3
	10.	Consider K-MAP simplification and implement		
		using AOI logic	8 CC	
		$f(a,b,c,d)=\sum (1,2,4,12,13)+d(5,6,7 \text{ to POS form.}$		CO 3
		$f(w,x,y,z)=\pi(1,3,9,11,15) \varphi(0,2,5)$ to SOP form		
		Design		
IV	1.	(i) HALF ADDER	9	CO 4
1 4	1.	(ii) HALF SUBTRACTOR		
	l .	(II) HALF SUDTRACTOR		

		(iii) FULL ADDER		
		(iii) FULL ADDER (iv) FULL SUBTRACTOR		
	-	/		
	2.	Explain 4 bit ripple adder/subtractor with suitable	7	CO 4
		example.		
	2	Design	1.0	GO 4
	3.	(i) 4bit magnitude comparator	10	CO 4
		(ii) 5bit magnitude comparator		
		Summarize the following code converters		
		(i) GRAY-BINARY		
	4.	(ii) BINARY-BCD	8	CO 4
		(iii) BCD-XS3		20.
		(iv) XS3-BINARY		
		(v) INARY-GRAY		
	5.	Design (i) octal to binary encoder	9	CO 4
	J.	(ii) 4 bit priority encoder	۶ 	
		Reproduce HALF SUBTRACTOR and FULL		
	6.	ADDER using (i) MUX (ii) DEMUX (iii)	2	CO 4
		DECODER		
		Apply decoder and external gates for following		
		(i) F ₁ =X'Y'Z'+XZ		
		$F_2 = XY'Z' + X'Y$		
	7.	$F_3 = X'Y'Z' + XY$	5	CO 4
		(ii) $F_1 = \sum (0,1,3,6,7)$		
		$F_1 = \sum_{i=1}^{n} (0,2,4,7)$		
		Represent following using LOGIC GATE (i) 3 to 8		
	8.	decoder (ii) 4 to 16 mux (iii) 1x16 demux	4	CO 4
	0	Analyze following using (i) 4 input mux (ii) 8x1	7	CO 4
	9.	mux (iii) 3 to 8 decoder (iv) 2 to 4 decoder	7	CO 4
		$F_1 = \sum_{i=1}^{n} (0,1,3,6,7)$		
	1.0	Apply (i) 4 input mux (ii) 8x1 mux (iii) 16x1 mux		GO 4
	10.	for following	6	CO 4
		$F_1 = \sum (0,1,3,4,8,9,15)$		
	11.	Convert 4 to 16 decoder into demux	3	CO 4
		n the operation of (a) SR latch using NOR gates (b)		
		Gated D latch using NAND gates	7	CO5
		n the operation of negative edge triggered D	7	007
	2.	flip-flop when CP=1.	7	CO5
		is RACE AROUND condition? How can we		
.,	3.	eliminate it? Explain MASTER SLAVE JK	2	CO5
]	flip-flop and state its advantages.	_	
V		h the operation of positive edge triggered JK		
	4.	flip-flop in detail.	3	CO5
	5.	uish combinational & sequential logic circuits?	8	CO5
	6.	· · · · · · · · · · · · · · · · · · ·	6	
	0.	et different methods used to trigger a flip-flop?	0	CO5
	7.	flip-flop? Design basic flip-flop circit with NAND	1	CO5
		gates.		
	8.	EXCITATION tables and TRUTH tables of (a) D	10	CO5
		(b) T (c) JK (d) SR flip-flops.	-	

	9.	ine characteristic equations of (a) D (b) T (c) JK (d) SR flip-flops.	5	CO5
	10.	the following terms with respect to flip-flops (a)Setup time (b) Hold time (c) Propagation delay (d) Preset (e) Clear (f) Latch	8	CO5
	11.	t the following flip-flops (a) JK to D (b) T to D (c) D to SR (d) SR to JK (e) T to SR	4	CO5
		uish Asynchronous & Synchronous sequential logic circuits?	8	CO6
	2.	eat diagram explain operation of (a)3 bit universal shift register. (b) 4 bit controlled buffer register.	7	CO6
	3.	te Johnson's counter using a 2 bit shift register. Draw waveforms and list applications of shift register.	5	CO6
	4.	be about parallel in serial out shift register. How to load data word ABCD=1101 in the 4 bit bidirectional shift register in shift left mode.	2	CO6
	5.	a register for left & right shift of data for 10110101.	9	CO6
VI	6.	ntiate ring counter and twisted ring counter. Draw and explain about 4 bit ring counter.	8	CO6
V 1	7.	n about synchronous ripple counter and compare merits and demerits.	3	CO6
	8.	h about 4 bit ripple down counter using positive edge triggered flip-flop.	4	CO6
	9.	ripple counter. Design BCD ripple counter.	1	CO6
	10.	n about working of 4 bit asynchronous counter.	7	CO6
	11.	(a) mod-12 synchronous up counter using 'T' flip-flop. (b) mod-10 synchronous down counter using 'JK' flip-flop. (c) mod-6 synchronous up counter using 'D' flip-flop. (d) mod-6 synchronous down counter using 'SR' flip-flop.	10	CO6
	12.	ter has 14 stable states 0000 to 1101.if input frequency is 50KHz Compute it's output frequency?	6	CO6

TUTORIAL QUESTIONS Subject: Computer Graphics

	UNIT – I	Blooms taxonomy	Mapping with outcome
1	Explain the Bresenham's line drawing algorithm	4	
2	Explain the midpoint circle drawing algorithm. Assume		
	10cm as the radius and co-ordinate origin as the center of	4	
	the circle		
3	Explain (a) random and raster scan devices (b) primitives	3	
	used for filling		
4	Explain about filled area primitives	3	G0.2
5	Explain D viewing pipeline in detail	3	CO2
6	Explain Cohen-Sutherland's line clipping algorithm.	4	
7	Derive the viewing Transformation matrix in detail	6	
8	Explain polygon clipping algorithm	3	
9	Explain the different 2D transformations	4	
10	Explain the about the lines of attribute primitives?	3	
	UNIT – II		
1	Explain about parallel and perspective projection in detail?	9	
2	Discuss the concept of three dimensional object	8	
	representations?		
3	Explain curved line and splines	9	
4	Explain about quadric surface in detail?	9	
5	Discuss about the concept of Visualization of data sets?	7	CO2
6	Explain about 3D Transformation in detail?	3	
7	Explain the concept of 3D viewing in detail?	4	
8	What are the methods of visible surface detection?	2	
9	What is back face detection ?give one example	1	
10	Write the concept of painter's method?	1	
	UNIT – III		•
1	What is the importance of graphics programming?	2	
2	Write short note on the following color models: I. RGB II. YIQ III. CMY IV. HSV	2	
3	What is computer animation? give one example	1	1
4	Explain about general computer animation techniques?	3	CO3
5	Discuss about raster animation in detail?	9	
6	Discuss about key frame systems?	4	1
7	What are basic graphics primitives?	2	
8	Write the concept of drawing three dimensional objects?	2	
9	Write the concept of drawing three dimensional scenes?	2	1
10	What is animation sequence?	2	
	UNIT – IV		1
1	What is rendering? give one example	1	
2	What is shading ?give one example	1	1
3	Explain the concept of shading models?	4	-
	Lapiani die concept of shading models:	-	1
4	Discuss the concept of flat and smooth shading?	7	

6	Write the concept of adding shadows of objects?	9	CO4
7	Discuss about the concept of building a camera in a	9	
	program?		
8	Explain the concept of creating shaded objects?	3	
9	Discuss about rendering textures?	3	
10	Discuss about drawing shadows?	2	
	UNIT – V		
1	Discuss about the concept of Fractals and self similarity?	3	
2	Explain about the concept of peano curves?	9	
3	What is creating image by iterated functions?	2	CO5
4	What are Mandelbrot sets? Give example?	4	
5	Explain about Julia sets? Give example?	3	
6	Explain about Random Fractals? Give example?	4	
	UNIT – VI		
1	What is meant by intersecting rays?	2	
2	Give the relationship between intersecting rays and	2	
	primitives?		
3	Write the concept of adding surface textures?	9	CO6
4	What is reflection and transference?	2	
5	Write the concept of Boolean operation on objects?	2	