III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS
 (Mechanical Engineering)

Time: 3 hours
Maximum Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A
1 a) List various output devices used in computers.
b) Derive the transformation matrix for rotation about $\mathrm{X} \& \mathrm{Z}$ axis.
c) Explain about window to viewport and viewport to window transformations.
d) What is a closed and open curve?
e) Explain about visible surface detection.
f) Explain about backface detection.

PART -B

a) Explain the functioning of a Plasma display system.

> b) Explain various hardcopy output devices.

3 Explain flood fill algorithm with an example showing stack position at each step.
4 Demonstrate Sutherland-Hodgeman polygon clipping algorithm with an example.
5 Derive the blending functions for a Bezier surface 3×3.
6 Derive the transformation matrix to reflect an object about an arbitrarily selected plane.
$7 \quad$ Write short notes on
a) Animation specification involving accelerations. [5M]
b) Motion specifications in animation.
c) Homogeneous coordinates.

III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)
Time: 3 hours
Maximum Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

a) Explain the difference between random scan and raster scan devices.
b) Derive the transformation matrix for rotation about $\mathrm{X} \& \mathrm{Y}$ axis.
c) Explain the cohen-sutherland clipping algorithm.
d) Explain about wireframe modeling.
e) Explain the need for concatenation of matrices.
f) Discuss about motion specification.

PART -B

2 Explain various input and output devices.
3 Prove that a uniform scaling ($\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}$) and a rotation form a commutative pair of operations but that, in general, scaling and rotation are not commutative operations.

Compare the number of arithmetic operations performed in the CohenSutherland and the Cyrus-Beck line-clipping algorithms for two different line orientations relative to a clipping window.

Determine the blending functions for uniform, periodic B-spline curves of [16M] degree 3.

Write the depth buffer algorithm and demonstrate with an example.
Write short notes on
a) Key frame systems.
b) General computer animation functions.
c) Parallel and perspective projections.

III B. Tech II Semester Regular Examinations, April - 2016
 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)
Time: 3 hours
Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A
1 a) Explain the functioning of CRT monitor.
b) Derive the transformation matrix for rotation about $\mathrm{Y} \& \mathrm{Z}$ axis.

$$
\Leftrightarrow \in-1
$$

c) Explain the liang barsky algorithm.
d) Write the shortcomings of Bezier curves.
e) Derive the relation for rotation about XY plane, YZ plane and XZ plane.
f) Explain about keyframe system.

PART -B

2 Explain in detail about any four input devices.
Show that transformation matrix for a reflection about the line $\mathrm{y}=\mathrm{x}$, is equivalent to a reflection relative to the x axis followed by 2 counterclockwise rotation of 90°.

4 a) Derive the window-to-viewport transformation equations by first scaling the window to the SIZE of the viewport and then translating the scaled window to the viewport position.

Derive blending functions for a B -spline surface of degree 3×3.
Derive the transformation matrix for scaling an object by scaling factor S in a direction defined by the directional angles α, β, γ.

7 Write short notes:
a) Generation of in-betweens key frames using linear interpolation
b) Raster animation
c) Back face detection.

III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)
Time: 3 hours
Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Explain various input devices used.
b) Explain DDA algorithm.
c) Explain about viewing function.
d) Explain about CSG modeling.
e) Explain about Z buffer algorithm.
f) Explain about animation sequence.

PART - B

2 Explain the functioning of any two monitors with applications.
3 Show that transformation matrix, for a reflection about the line $y=-x$, is equivalent to a reflection relative to the y axis followed by a counterclockwise rotation of 90°.

Carefully discuss the rationale behind the various tests and methods for calculating the intersection parameters u_{1} and u_{2} in the Cyrus-Beck line-cllpping algorithm.

5 Explain about any two shading algorithms in detail.
Write scan line algorithm for visible surface detection and explain with an example.

Write short notes on
a) Animation specification implementing the acceleration-deceleration calculation.
b) Computer animation languages.
c) 3-D clipping.

