II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016
 MECHANICS OF SOLIDS

(Com. to ME, AME, AE, MTE)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) Define and Explain Principal stresses and principal planes?
b) Derive the Relation between Shear force, Bending Moment and Rate of loading at a section Of a beam
c) Draw the Shear stress diagrams for I- section and T- section.
d) A beam 4 m long, simply supported at its ends, carries a point load W at its center. If the slope at the beam is not to exceed 1^{0}, find the deflection at the center of the beam.
e) Derive the equations of longitudinal and circumferential stress.
f) Derive the equation of maximum torque transmitted by a circular solid shaft.
$(3 \mathrm{M}+3 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M})$

PART-B

2. a) Two vertical rods one of steel and the other of copper are each rigidly fixed at the top and 50 cm apart. Diameters and lengths of each rod are 2 cm and 4 cm respectively. A cross bar fixed to the rods at the lower ends Carries a load of 5000 N such that the cross bar remains horizontal even after loading. Find the stress in each rod and position of the load on the bar. Take $E_{\mathrm{s}}=2 . \mathrm{x} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, E_{\mathrm{c}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
b) A round bar of length L and diameter D is subjected to an axial pull P. Find the change in volume of the bar. Poisson's ratio $=1 / m$, young's modulus $=E$.
($8 \mathrm{M}+8 \mathrm{M}$)
3. a) Draw the sheer force and bending moment diagrams for the beam shown in fig. and also find out the Maximum bending moment and point of contra flexure.

b) A simply supported beam of length 5 m carries a uniformly increasing load of $800 \mathrm{~N} / \mathrm{m}$ run at one end to $1600 \mathrm{~N} / \mathrm{m}$ run at the other end. Draw the sheer force and bending moment diagrams for the beam. Also calculate the position and magnitude of maximum bending moment.
($10 \mathrm{M}+6 \mathrm{M}$)
4. a) A timber beam 150 mm wide and 200 mm deep is to be reinforced by bolting on two steel flitches each 150 mm by 12.5 mm in section. Calculate the moment of resistance in the following cases; (i) flitches attached symmetrically at the top and bottom
(ii) flitches Attached symmetrically at the sides. Allowable stress in timber is $6 \mathrm{~N} / \mathrm{mm}^{2}$. What is the maximum stress in the steel in each case? Take $E_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, E_{\mathrm{t}}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
b) A rectangular beam 300 mm deep is simply supported over a span of 4 m . Determine the U.D.L per meter which the beam may carry, if the bending stress should not exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$. Take $I=8 \times 10^{6} \mathrm{~mm}^{4}$.
(10M+6M)
5. a) Derive the Relation between slope, deflection and radius of curvature.
b) Derive the deflection of a simply supported beam carrying a uniformly distributed load.
($10 \mathrm{M}+6 \mathrm{M}$)
6. a) A thin cylindrical pressure vessel of diameter 2.5 m and thickness of 18 mm is subjected to an internal pressure of $1.2 \mathrm{~N} / \mathrm{mm}^{2}$. In addition, the vessel is also subjected to an axial tensile load of 2800 kN . Determine the normal and shear stresses on a plane at an angle of 60° to the axis of the vessel and also find the maximum shear stress.
b) Find the ratio of thickness to internal diameter for a tube subjected to internal pressure, when the pressure is $5 / 8$ of the maximum permissible circumferential stress. Find the increase in internal diameter of such a tube 100 mm internal diameter, when the internal pressure is $90 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, and Poisson's ratio $=0.286$
($8 \mathrm{M}+8 \mathrm{M}$)
7. a) A hallow shaft of diameter ratio $3 / 8$ is to transmit 375 kW power at 100 rpm . The maximum torque being 20% greater than the mean, the shear stress is not exceed to $60 \mathrm{~N} / \mathrm{mm}^{2}$ and twist in a length of 4 m not to exceed 2^{0}. Calculate its external and internal diameters which would satisfy both the above conditions. Assume modulus of rigidity G $=0.85 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
b) A compression member of 500 mm effective length consists of solid aluminum rod of 25 mm diameter in order to reduce the weight of the member by 25%, the solid rod is replaced by the hallow aluminum rod of 25 mm external diameter. Determine the critical loads for the two members and also find $\%$ reduction in the critical load when the hallow member is provided. Take $\mathrm{E}=7.28 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$
($8 \mathrm{M}+8 \mathrm{M}$)

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016

MECHANICS OF SOLIDS

(Com. to ME, AME, AE, MTE)
Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) Define Proof resilience and modulus of Resilience?
b) Define and Explain Shear force and Bending Moment?
c) Define Pure bending and Write the Assumptions for theory of Simple Bending.
d) Write the methods of determining Slope and Deflection at a section in a loaded beam
e) What are the types of stresses in the cylinders? Explain any one of the stress.
f) Calculate the safe compressive load on a hollow cast iron column of one end is fixed and other hinged of 15 cm external diameter, 10 cm internal diameter and 10 m in length. Use Euler's formula with a factor of safety of 5 and $\mathrm{E}=95 \mathrm{kN} / \mathrm{mm}^{2}$. $(4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+3 \mathrm{M}+3 \mathrm{M}+4 \mathrm{M})$

PART-B

2. a) Derive relation between $E \& G$
b) Draw Mohr's circle when the component is subjected state of pure shear
($8 \mathrm{M}+8 \mathrm{M}$)
3. a) Draw the shear force and bending moment diagram for given figure. Also find the maximum bending moment and point of contraflexure.

b) A horizontal beam 10 m long is carrying a uniformly distributed load of $1 \mathrm{kN} / \mathrm{m}$. The beam is supported on two supports 6 m apart. Find the position of the supports, so that bending moment on the beam is as small as possible. Also draw the shear force and bending moment diagrams.
($8 \mathrm{M}+8 \mathrm{M}$)

1 of 2
4. a) A beam of cross-section of an isosceles triangle is subjected to a shear force of 30 kN at a section where base width $=150 \mathrm{~mm}$ and height $=450 \mathrm{~mm}$. Determine
(i) horizontal shear stress at the neutral axis
(ii) the distance from the top of the beam where shear stress is maximum
(iii) value of maximum shear stress.
b) The shear force acting on the beam at an I- section with unequal flanges is 50 kN .The section is shown in figure. The moment of inertia of a section about N.A is 2.849×10^{4}. Calculate the shear stress at the N.A. and also draw the shear stress distribution over the depth of the section.
($8 \mathrm{M}+8 \mathrm{M}$)

5. a) A beam of length 6 m is simply supported at its ends and carries two point loads of 48 kN at a distance of 1 m and 3 m respectively from the left support. Find (i) Deflection under each load (ii) Maximum deflection (iii) the point at which maximum deflection occurs. Given $E=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and $I=85 \times 10^{6} \mathrm{~mm}^{4}$.
b) A horizontal beam of symmetrical section simply supported at the ends, carries a load whose intensity varies uniformly from $18 \mathrm{kN} / \mathrm{m}$ at one end to $72 \mathrm{kN} / \mathrm{m}$ at the other. Find the central deflection if the span is 6 m , the section is 450 mm deep and the maximum bending stress is $90 \mathrm{~N} / \mathrm{mm}^{2}$. Take $E=200 \mathrm{kN} / \mathrm{mm}^{2}$.
($8 \mathrm{M}+8 \mathrm{M}$)
6. a) A shell 3.25 m long, 1 m in diameter is subjected to an internal pressure of $1 \mathrm{~N} / \mathrm{mm}^{2}$. If thickness of the shell is 10 mm , find the circumferential and longitudinal stresses. And also find the maximum shell stress and the changes in the dimensions of the shell. Take $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}, 1 / \mathrm{m}=0.3$.
b) A riveted boiler 2.25 m in diameter has to sustain and internal pressure of $0.56 \mathrm{~N} / \mathrm{mm}^{2}$. The efficiency of the riveted joints is 70% and a safe stress of $60 \mathrm{~N} / \mathrm{mm}^{2}$ is allowed in a material. Find the thickness of the shell and the necessary pitch of rivets for the longitudinal joints, which is a single riveted butt joint. Take diameter of rivet $=6 \sqrt{t}$ and where t is thickness of the plate.
($10 \mathrm{M}+6 \mathrm{M}$)
7. a) Determine the diameter of a solid shaft which will transmit 300 kW at 250 rpm . The maximum shear stress should not exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$ and twist should not more than 1^{0} in a shaft length of 2 m . Take $\mathrm{C}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
b) A column of timber section $15 \mathrm{~cm} \times 20 \mathrm{~cm}$ is 6 meters long both ends being fixed. If the young's modulus for Timber $=17.5 \mathrm{kN} / \mathrm{mm}^{2}$, determine
(i) Crippling load
(ii) Safe load for the column if factor of safety $=3 . \quad(8 \mathrm{M}+8 \mathrm{M})$

- f
||"|"'|"|'|"'"||

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 MECHANICS OF SOLIDS

(Com. to ME, AME, AE, MTE)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART - A

1. a) Draw the Stress- Strain diagram for Mild Steel, Cast Iron and Plastic
b) Define beam? Write classification of beams and loads acting on the beams.
c) Write the formulas of section modulus for Hollow Rectangular section and Circular section
d) Determine the slope and deflection of a simply supported beam carrying a point load at the center by MOHR'S theorem.
e) A water main 80 cm diameter contains water at a pressure head of 100 m . If the weight density of water is $9810 \mathrm{~N} / \mathrm{m}^{3}$, find the thickness of the metal required for the water main. Given the permissible stress as $20 \mathrm{~N} / \mathrm{mm}^{2}$.
f) What are the assumptions made in the derivation of shear stress produced in a circular shaft Subjected to Torsion?
($4 \mathrm{M}+3 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+3 \mathrm{M})$

PART - B

2. a) A piece of material is subjected to three mutually perpendicular tensile tresses and the strains in the three directions are in the ratio 3:4:5. If the value of Poisson's ratio is 0.2857 , find the ratio of the stresses and their values when the greatest stress is $90 \mathrm{~N} / \mathrm{mm}^{2}$.
b) Draw Mohr's circle when the component is subjected to state of pure shear.
($8 \mathrm{M}+8 \mathrm{M}$)
3. a) A beam of 10 m length is acted upon by forces and a couple as shown in figure. Draw the shear force and bending moment diagram.

b) A beam of 8 m span is hinged at each end. It carries a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ on the left half of the beam along with a 25 kN load at 6 m from the left-hand end. In addition the beam is also subjected to couples of 20 kNm in counter clockwise direction at left-hand support and 30 kNm in the clockwise direction at the right hand support. Determine the reactions at the ends and draw the sheer force and bending moment diagrams indicating the principal values.
($8 \mathrm{M}+8 \mathrm{M}$)
4. a) An I-section beam $350 \mathrm{~mm} \times 150 \mathrm{~mm}$ has a web thickness of 10 mm and a flange thickness of 20 mm . If the shear force acting on the section is 40 kN , find the maximum shear stress developed in the section. Sketch the shear stress distribution across the section. Also calculate the total shear force carried by the web.
b) Derive the expression for the bending stress $M / I=\sigma / y=E / R$.
($10 \mathrm{M}+6 \mathrm{M}$)
5. a) A beam of length 8 m is simply supported at its ends. It carries a uniform distributed load of $40 \mathrm{kN} / \mathrm{m}$ as shown in figure. Determine the deflection of beam at its mid-point and also the maximum deflection and its position. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $I=4.3 \times 10^{8} \mathrm{~mm}^{4}$.

b) A horizontal beam AB is simply supported at A and $\mathrm{B}, 6 \mathrm{~m}$ apart. The beam is subjected to a clockwise couple of 300 kNm at a distance of 4 m from the left end. If $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $I=2 \times 10^{8} \mathrm{~mm}^{4}$. Determine (i) Deflection at the point where couple is acting
(ii) the maximum deflection.
($8 \mathrm{M}+8 \mathrm{M}$)
6. a) A cylindrical shell 1 m long, 180 mm internal diameter, thickness of metal 8 mm is filled with a fluid at atmospheric pressure. If an additional $20,000 \mathrm{~mm}^{3}$ of the fluid is pumped in to the cylinder. Find the pressure exited by the fluid on the wall of the cylinder and also find the hoop stress is induced take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.3$
b) A thick spherical shell of 100 mm internal diameter is subjected to an internal fluid pressure of $30 \mathrm{~N} / \mathrm{mm}^{2}$. If Permissible tensile stress is $80 \mathrm{~N} / \mathrm{mm}^{2}$ find the thickness of the shell.
7. a) A hallow shaft, having an internal diameter 40% of its external diameter transmits 562.5 kW power at 100 rpm . Determine the external diameter of the shaft if the shear stress is not exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$ and the twist in a length of 2.5 m should not exceed 1.3 degrees. Assume maximum torque $=1.25$ mean torque and $\mathrm{C}=9 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$
b) Derive an expression for crippling load when one end of the column is fixed and the other end is free.
($8 \mathrm{M}+8 \mathrm{M}$)

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 MECHANICS OF SOLIDS

(Com. to ME, AME, AE, MTE)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) Write the relationship between modulus of elasticity and modulus of rigidity.
b) Explain Maximum Bending moment and Point of contra flexure.
c) A rectangular beam 200 mm deep and 300 mm wide is simply supported over a span of 8 m . What Uniform Distributed Load per meter the beam may carry, If the bending stress is not exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$.
d) Determine the slope and Deflection of a simply supported beam carrying uniformly distributed load by MOHR'S theorem.
e) A cylindrical shell of thickness 1.5 cm has to withstand maximum internal pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$. If the ultimate stress in the material of the cylinder is $300 \mathrm{~N} / \mathrm{mm}^{2}$, factor of safety 3.0 and joint efficiency 80%, determine the Diameter of the cylinder.
f) Find the maximum shear stress induced in a solid circular shaft of diameter 15 cm when the shaft transmits 150 kW power at 180 r.p.m. $\quad(3 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+4 \mathrm{M}+3 \mathrm{M})$

PART-B

2. a) A metallic bar $250 \mathrm{~mm} \times 100 \mathrm{~mm} \times 50 \mathrm{~mm}$ is loaded as shown in fig. find the change in volume. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$. Also find the change that should be made in the 4 MN load, in order that there should be no change in the volume of the bar.

b) A bar of steel is length L and the diameter of the bar is varies uniformly from D_{1} at one end to D_{2} at another end. Find the extension of the rod when is carries an axial pull P. $\quad(8 \mathrm{M}+8 \mathrm{M})$
3. a) Analyse the beam ABCD shown in figure. Draw the shear force and bending moment diagram, also calculate the maximum bending moment.

b) A 20 m long girder carrying a U.D.L of $\mathrm{W} \mathrm{kN} / \mathrm{m}$ is to be supported on two piers, 12 m apart, in such a way that the maximum bending moment is as small as possible. Determine the distance of piers from the ends of the girder and the maximum bending moment. Draw the sheer force and bending moment diagrams.
($8 \mathrm{M}+8 \mathrm{M}$)

4. a) Figure shows a section, which is subjected to a sheer force of 100 kN . Determine the shear stresses at A, B, C, and D. Sketch the shear stress distribution also.

b) A circular beams where one is solid of diameter D and other is a hollow of outer diameter D_{0} and inner diameter D_{i} are f the same length, same material and of same weight. Find the ratio of section modulus of these circular beams
($10 \mathrm{M}+6 \mathrm{M}$)
5. a) Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load.
b) A horizontal beam of uniform section is pinned at its ends which are the same level and is loaded at the left hand pin with an anti clockwise moment M and right hand pin with a clockwise moment 2 M both in the same vertical plane. The length between the pins is L . Find the angles of the slope at each end and the deflection of the midpoint of the span in terms of M, L, E and I.
($10 \mathrm{M}+6 \mathrm{M}$)
6. a) A cylindrical tank 1.8 m in diameter and 2.4 m long is 12.5 mm thick. The ends which are flat and rigid are joined by 9 tie bars of 38 mm diameter, and equally spaced. If the tie bar are initially stressed to $45 \mathrm{~N} / \mathrm{mm}^{2}$ and the tank filled with the water determine how much extra water will be pumped in during a pressure test to $1.4 \mathrm{~N} / \mathrm{mm}^{2}$ and find the new stress in the tie bar. Neglect any constraint at the junction between the shell and the ends. Take for the tank material and the tie rods $\mathrm{E}=2.06 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and the bulk modulus of water $K=2060 \mathrm{~N} / \mathrm{mm}^{2}$.
b) Determine change in dimensions of a thin spherical shell due to an internal pressure.
($10 \mathrm{M}+6 \mathrm{M}$)
7. a) Two shafts of same material and same lengths are subjected to same torque, if the first shaft is a solid circular section and the second shaft is hallow circular section whose internal diameter is $2 / 3$ of the outside diameter. And the maximum shear stress developed in each shaft is the same, compare the weights of the shafts.
b) A simply supported beam of length 4 m is subjected to a uniformly distributed load of 30 kN / m over the whole span and deflects 15 mm at the center. Determine the Crippling loads when this beam is used as a column with the following conditions.
(i) One end fixed and other end hinged (ii) both the ends pin jointed.
($8 \mathrm{M}+8 \mathrm{M}$)
