SET - 1

II B. Tech I Semester Supplementary Examinations, June - 2015 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1 a) What is elastic limit and elasticity?
4
b) Draw the S.F.D and B.M.D of a cantilever carrying point load at the free end.
c) Write the assumptions of simple bending.
d) A cantilever of length 2.6 m carries a u.d. 1 of $16.5 \mathrm{kN} / \mathrm{m}$ length over entire length. 4 If moment of inertia of the beam is $7.90 \times 10^{7} \mathrm{~mm}^{4}$ and value of $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$, determine the deflection at the free end.
e) A spherical vessel 1.5 m diameter is subjected to an internal pressure of exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
f) Define the terms Torsion and torsional rigidity.

PART-B

2 a) Derive an expression for the major and minor principle stresses on an oblique 12 M plane, when the body is subjected to direct stresses in two mutually perpendicular directions accompanied by shear stresses.
b) A steel rod which tapers uniformly from 5 cm diameter to 3 cm diameter in length of 50 cm , is subjected to an axial load of 6000 N .If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find the extension of the rod.

3 a) A cantilever of length 4 m carries a gradually varying load, zero at the free end to $2 \mathrm{kN} / \mathrm{m}$ at the fixed end .Draw the S.F.D and B.M.D for the cantilever.
b) Derive the relation between loading, shear force and bending moment

4 a) A Cantilever of length 2 m fails when a load of 2 kN is applied at the free end. If the section of the beam is $40 \mathrm{~m} \times 60 \mathrm{~m}$,find the stress at the failure.
b Show that for a rectangular section the maximum shear stress is 1.5 times the average stress.

5 a) A cantilever beam AB of length 6 m carries a point load of 100 kN at free end and another point load 100 kN at 3 m from the free end.If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8}$ mm^{4} for the cantilever then determine the slope and deflection at the free end by Moment area method.
b) Write in brief about double integration method

6 Derive Lami's equation of thick cylinders.
7 a) Derive the expression for the crippling load when both ends of the column are 10 M hinged.
b) Define polar modulus .Derive polar modulus for solid shaft and hollow shaft.

SET - 2

II B. Tech I Semester Supplementary Examinations, June - 2015 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Max. Marks: 70
Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A
1 a) What is tangential stress and longitudinal stress?
b) Draw the S.F.D and B.M.D of a cantilever carrying u.d.l throughout.
c) Define section modulus. Derive for rectangular section.
d) A cantilever of length 3.6 m carries a u.d.l of $12.5 \mathrm{kN} / \mathrm{m}$ length over entire length. If moment of inertia of the beam is $7.90 \times 10^{7} \mathrm{~mm}^{4}$ and value of $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the deflection at the free end.
e) A spherical vessel 2.0 m diameter is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the thickness of the plate required if maximum stress is not to exceed $180 \mathrm{~N} / \mathrm{mm}^{2}$.
f) Write the limitations of Euler's formula.

PART -B

2 a) Derive an expression for the stresses on an oblique plane of a rectangular 12 M body, when the body is subjected simple shear stresses.
b) A steel rod which tapers uniformly from 6 cm diameter to 4 cm diameter in length of 60 cm , is subjected to an axial load of 7000 N .If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find the extension of the rod.

3 a) A cantilever of length 3 m carries a gradually varying load, zero at the free end to $1 \mathrm{kN} / \mathrm{m}$ at the fixed end .Draw the S.F.D and B.M.D for the cantilever.
b) Derive the relation between loading, shear force and bending moment

4 Derive the equation $M / I=f / y=E / R$
5 a) A cantilever beam AB of length 4 m carries a point load of 100 kN at free end and another point load 100 kN at 2 m from the free end. If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8}$ mm^{4} for the cantilever then determine the slope and deflection at the free end by Moment area method.
b) Write in brief about Macualay's method.

6 a) A cylindrical vessel is 1.6 m diameter and 5 m long is closed at ends by rivets. It is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$.If the maximum principal stress is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$, find the thickness of the shell. Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$. Find the change in diameter, length and volume of the shell.
b) Differentiate between thin cylinder and thick cylinder.

7 Derive the expression for the crippling load by Rankine's method.

II B. Tech I Semester Supplementary Examinations, June - 2015 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A

1 a) State Hooke's law 2
b) Write about different types of beams and different loadings. 4
c) Write about neutral axis and moment of resistance. 4
d) What is deflection, slope and radius of curvature in a beam? 3
e) Derive expression for circumferential stress in a thin cylindrical shell. 5
f) What do you mean by strength of a shaft? 4

PART - B

2 Derive the relation between three moduli of elasticity
16M
3 A beam of length is 10 m is simply supported and carries point loads of 5 kN each at a distance of 3 m and 7 m from left support and also a uniformly distributed load of $1 \mathrm{kN} / \mathrm{m}$ between the point loads. Draw the S.F.D and B.M.D

4 a) A Cantilever of length 2 m fails when a load of 2 kN is applied at the free end. If the section of the beam is $40 \mathrm{~m} \times 60 \mathrm{~m}$, find the stress at the failure.
b) Prove that maximum shear stress in a circular section of a beam is $4 / 3$ times the 8M average shear stress.

5 a) A beam of span 8 m and of uniform flexural rigidity $\mathrm{EI}=40 \mathrm{MN}-\mathrm{m}^{2}$, is simply supported at its ends. It carries a uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ run over the entire span. It is also subjected to a clockwise moment of 160 kNm at a distance of 3 m from left support. Calculate the slope of the beam at the point of application of moment.
b) Write about moment area method.

6 Derive Lami's equation of thick cylinders. 16M

7 a) A solid cylindrical shaft is to transmit 300 kW power at 100 r.p.m .If the shear stress is not to exceeed $80 \mathrm{~N} / \mathrm{mm}^{2}$, find its diameter.
b) Derive the expression for the crippling load when both ends of the column are 10 M hinged.

II B. Tech I Semester Supplementary Examinations, June - 2015 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1 a) Define modular ratio, thermal stresses and thermal strain 4
b) Draw the B.M.D of simply supported beam with uniformly varying load with 4 zero at free ends and w per metre run at the centre.
c) Draw the shear stress diagram of T section.
d) A cantilever of length 3.0 m carries a point load of 12.5 kN at the free end. If determine the deflection at the free end.
e) Derive expression for longitudinal stress in a thin cylindrical shell.
f) Write the assumptions made in derivation of shear stress produced in circular shaft subjected to torsion.

PART -B

2 a) Derive the relation between modulus of elasticity and modulus of rigidity.
b) Determine the expression for strain energy stored in a body due to shear stress.

3 A beam of length is 12 m is simply supported and carries point loads of 6 kN each at a distance of 4 m and 8 m from left support and also a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ between the point loads. Draw the S.F.D and B.M.D

4 Derive the shear stress at any point in the cross section of a beam which is subjected to a shear force F.

5 a) A cantilever beam AB of length 4 m carries a point load of 100 kN at free end and another point load 100 kN at 2 m from the free end. If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8}$ mm^{4} for the cantilever then determine the slope and deflection at the free end by Double integration method.
b) Write in brief about Macualay's method.

6 a) A cylindrical vessel is 1.6 m diameter and 5 m long is closed at ends by rivets. It is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. If the maximum principal stress is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$, find the thickness of the shell. Assume $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$. Find the change in diameter, length and volume of the shell.
b) Differentiate between thin cylinder and thick cylinder.

7 Derive the equation $\tau / \mathrm{R}=\mathrm{Ce} / \mathrm{L}=\mathrm{q} / \mathrm{R}$

