II B. Tech I Semester Supplementary Examinations, June - 2015 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME)

Tir	ne: 3	hours Max. Ma	arks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B	
		PART -A	
1	a)	Explain metallic bond in detail.	[3]
	b)	What is an alloy? What is the need for alloying?	[3]
	c)	What is an eutectic temperature?	[4]
	d)	What are cast Irons? Why are they named so?	[4]
	e)	Give reasons why there exist many types of ceramics.	[4]
	f)	What are the properties that are to be considered for good bonding between fibres and matrix.	[4]
		PART -B	
2	a)	Explain the cooling history of 4.3% C in Fe-Fe ₃ C system by drawing cooling curve?	[8]
	b)	Calculate proportionate of different phases for 2.8%C in Fe-Fe ₃ C diagram at 1200 ^o C, 1173 ^o C, and 600 ^o C. Also draw the microstructures at room temperature?	[8]
3	a)	What are cast Irons? Why are they named so? Give the importance of cast irons in the metallurgical curriculum with suitable example	[8]
	b)	Explain the microstructure, properties and applications of i. White Cast Iron ii. S.G. Cast Iron.	[8]
4	a)	What are the requirements of an age-hardenable alloy.	[4]
	b)	Give a typical heat treatment schedule for duralumin and explain the relevant microstructural changes.	[12]

5	a)	Mention atleast three compositions of copper alloys suitable for the following applications. i. Ship propeller	[10]
		ii. Bearings iii. Non-sparking tools	
	b)	iv. Springs Discuss briefly the precipitation hardening procedure with specific reference to beryllium copper.	[6]
6	a)	Explain the differences between an alloy and alloy system.	[8]
	b)	How are the alloy systems classified based on the number of elements present in it. Explain them with suitable examples.	[8]
7		What is MMC? Where are they used? Classify the MMCs according to the type of reinforcement and explain with suitable example.	[16]

II B. Tech I Semester Supplementary Examinations, June - 2015 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any THREE Questions from Part-B PART -A 1 What is the importance of grain size in steel? [3] Justify the statement "Alloy is a material which is expected of a metal, but it b) [3] is not a pure metallic element". Name possible types of Cementite in Fe-Fe₃C diagram? [4] c) Discuss in detail the effect of alloying elements in steels. [4] Distinguish between hardness and hardenability. [4] Discuss briefly about whisker reinforced composites? f) [4] **PART-B** a) Define and explain the structural phases. 2 [9] i. Ferrite ii. Austenite iii. Cementite. b) Describe the construction of the phase diagram for 2 metals completely soluble [7] in liquid state and insoluble in solid state. 3 What are four basic types of cast Irons? Explain them with respect to [16] properties, microstructure with a diagram and applications? 4 a) Define the term heat treatment and explain why are the steels heat treated [8] Define and explain hardness and Hardenability. [8]

5	a)b)	Explain the following types of malleable cast irons. i. Ferritic malleable cast iron ii. Pearlitic malleable cast iron. iii. Ferrito-Pearlitic malleable Cast Iron. Explain the different kinds of carbon steels. Explain them. Also give their	[9] [7]
		carbon contents.	
6	a)	(i) How the beta titanium alloys are strengthened.	[8]
	b)	(ii) Give at least 2 applications for alpha; alpha-beta and beta titanium alloys. Explain the role of the following elements on the structure and properties of copper alloys. i. lead ii. phosporus iii. aluminium iv. Manganese.	[8]
7	a)	Explain the importance of particle size in composite materials.	[8]
	b)	Explain the differences between matrix and dispersed phase in a composite material.	[8]

II B. Tech I Semester Supplementary Examinations, June - 2015 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any THREE Questions from Part-B PART -A Define grain and grain boundary? 1 [3] b) Discuss various types of intermediate phases? [3] c) What is the effect of carbon on Mechanical properties [4] d) What is the difference between Iron-Cementite and Iron-graphite phase [4] diagram? e) Give the heat treatment and applications for the following steels [4] i. Austenitic stainless steels ii. Martensitic stainless steels f) What are laminates? Indicate their characteristics. [4] PART -B Define crystallization of metal? How is that commercial alloy invariably 2 [8] solidify with heterogeneous nucleation? What factor favours the formation of fine grained material? How is a large [8] single crystal being produced? What is the disadvantage of too high a first stage annealing temperature for 3 [8] Malleable Cast Iron? Explain. Why are alloying elements added to steels? Give some examples of common [8] alloying elements and their effect on the properties of steel. 4 a) Discuss the characteristics of quenchants for effective removal of heat from a [8] work piece. Explain the effect of current on the depth of hardness during the induction [8] hardening process.

5	a)b)	What are the castable types of Aluminium alloys you know? Give the composition and industrial uses of LM6 alloys. Give examples of non-heat treatable type of aluminium alloys. What are their applications.	[8] [8]
6	a) b)	Name the important properties of Titanium. Discuss the properties and applications of Beryllium bronzes.	[8] [8]
7	a) b)	Why composite materials are considered now a days as structural materials in engineering applications? Discuss the influence of fiber length, orientation and composition on fibre reinforced composites.	[6] [10]

II B. Tech I Semester Supplementary Examinations, June - 2015 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any THREE Questions from Part-B PART -A 1 a) Write a short note on Directional solidification. [3] What do you mean by intermediate alloy phase? b) [3] c) Give the classification of stainless steels? [4] Discuss briefly Nitriding of steels. d) [4] Explain the effects of quenching media on the hardness of steels. e) [4] f) What is the role of matrix in a composite material? Discuss various types of [4] matrix materials. **PART-B** Explain chemical compounds, metallic compounds and interstecial 2 a) [9] compounds with suitable examples. Explain the effect of alloying elements on the properties of steel as [7] b) substitutional and interstecial alloying elements. Draw a neat sketch of Fe-Fe₃C diagram and label all important points, lines 3 [10] a) and phases in it. Explain the solidification of hypo eutectic cast Iron. [6] b) 4 Explain the following: [16] a) (i) Natural aging (ii) Artificial aging (iii) Delayed aging (iv) Solution treatment in Age hardening process 5 a) Explain about Alpha and Alpha-Beta Alloys of Titanium. [8] Which Aluminium casting alloy develops the highest mechanical properties?. b) [8] Why?

Co	de No	RT21031 (R13)	SET - 4
6	a)	Explain about Alpha and Alpha-Beta Alloys of Titanium.	[8]
	b)	Which Aluminium casting alloy develops the highest mechanical properties?.Why?	[8]
7	a)	Define the term composites. What factors influence the final properties of composites? Explain.	[8]
	b)	Explain about Glass Fibre-Reinforced Polymer composites.	[8]