II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRICAL TECHNOLOGY

T11	ne: 3	3 hours Max. Mark	cs: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B	
		PART -A	
1	a)	Explain the principle of a Dc Generator	[4]
	b)	What is the function of a commutator in Dc Generator	[3]
	c)	Draw the characteristics of Dc Shunt motor	[4]
	d)	Explain the equivalent circuit of a single phase transformer	[4]
	e)	Define slip and give its expression.	[4]
	f)	List the different applications of Single phase induction motors.	[3]
		<u>PART –B</u>	
2		Explain Multiply – excited magnetic field system with a neat diagram and derive the expression for the magnetic force developed	[16]
3	a)	Explain how the voltage is developed in a self excited DC shunt generator.	[8]
	b)	A 4 – pole lap wound Dc shunt generator has a useful flux/pole 0.07 Wb. The armature winding consists of 220 turns, each turn having a resistance of 0.004Ω . Calculate the terminal voltage when running at 900 rpm. If the armature current is 50A.	[8]
4	a)	Explain the construction and operation of a Dc Motor	[8]
	b)	A 440 V Dc shunt motor takes a 4 A at no – load. Its armature and field resistances are 0.4 ohm and 220 ohms respectively. Estimate the KW output and efficiency when the motor takes $60~\text{A}$ on full load.	[8]

7

its principle of operation.

[16]

5	a)	Derive the emf equation of a transformer	[8]
	b)	A 25 KVA,2200/220 V, 50 Hz distribution transformer is tested for efficiency and	[8]
		regulation as follows:	
		OC test (l.v side): 220V, 4A, 150 W	
		SC test (h.v side): 90 V, 10 A, 350 W	
		Calculate the i) Efficiency at full load and half load at 0.8 power factor lagging	
		current and, ii) Regulation of transformer at 0.8 power factor lagging current.	
6	a)	Explain how rotating magnetic field in developed in three phase induction motors.	[8]
	b)	Explain the different methods of starting Three phase induction motor.	[8]

Explain with a neat diagram the working of start single phase induction motor and

Time: 3 hours

Max. Marks: 70

II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRICAL TECHNOLOGY

		2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B	
		PART -A	
1	a)	Classify the types of windings in DC machines and number of parallel paths	[3]
	b)	Explain the commutation process in DC machines	[4]
	c)	Explain the principle of operation of Dc Motor	[4]
	d)	Define regulation of a transformer	[3]
	e)	Draw the torque slip characteristics of Three phase induction motor.	[4]
	f)	Explain the concept of Double revolving field theory in single phase motors.	[4]
		<u>PART –B</u>	
2		Explain singly – excited magnetic field system with a neat schematic diagram and also list the necessary assumptions made.	[16]
3	a)	Explain the constructional details of a Dc Machine	[8]
	b)	An 6 – pole wave connected DC Generator has 1000 armsture conductors and flux / pole 0.029 Wb.At what speed must it be driven to generate 500V?	[8]
4	a)	Derive the torque developed in a Dc motor	[8]
	b)	A 230 V dc shunt motor takes 32 A at full load. Find the back emf on full load if the resistances of motor armature and shunt field windings are 0.2 ohm and 115 ohms respectively.	[8]
5	a)	Explain about core type and shell type transformers	[8]
	b)	Explain in detail about the Open circuit and short circuit test that is performed on single phase transformer and comment up on the outcome.	[8]
6	a)	Explain how a rotating magnetic field is produced in a three phase induction motor.	[8]
	b)	The power input to the rotor of a 3-phase, 50 Hz, 6 pole, slip ring induction motor is 38 KW and the motor runs at 950 rpm. The rotor resistance per phase is 0.22 Ω . Determine the value of the rotor current per phase.	[8]
7		Explain with a neat diagram the working of Split phase capacitor – start induction motor.	[16]

II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRICAL TECHNOLOGY

Tiı	ne: 3	B hours Max. Mar	rks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B	
		<u>PART –A</u>	
1	a)	Explain the function of armature in Dc Generator	[3]
	b)	Discuss the function of inter poles in dc Machines	[3]
	c)	Explain the term Back emf with respect to dc motor.	[4]
	d)	Derive the condition for maximum efficiency of a transformer.	[4]
	e)	Explain the differences between the squirrel cage and Phase wound induction motor.	[4]
	f)	Explain the constructional features of Single phase induction motor	[4]
		<u>PART –B</u>	
2	a)	Explain the principles of electromechanical energy conversion	[8]
	b)	Explain in detail about the Electromechanical energy conversion device with the help of the necessary Block diagram	[8]
3	a)	Derive the emf equation of a DC Generator	[8]
	b)	Define the terms critical resistance and critical speed and bring out their roles in the process of self excitation of DC machines.	[8]
4	a)	Derive the condition for maximum power in a dc motor.	[8]
	b)	A 4 pole lap wound, 240 V motor has the following particulars: number of armature conductors 740; resistance of armature = 0.3 ohm; useful flux per pole = 0.035 Wb. If the total torque developed by the motor is 140 Nm, find the armature current taken and the speed.	[8]
5	a)	Explain the working principle and construction of a transformer	[8]
	b)	A 3300/300 V single phase 300 KVA transformer has 1100 primary turns. Find i) Transformation ratio ii) Secondary turns iii) Voltage / turn iv) Secondary current when it supplies a load of 200 KW at 0.8 power factor lagging.	[8]
6	a)	Explain the constructional details of the Three phase induction motor.	[8]
	b)	Explain the different power stages in a Three phase induction motor	[8]
7		Explain the construction features and principle of operation of a shaded pole Induction motor.	[16]

II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRICAL TECHNOLOGY

Ti	me: 3	3 hours	Max.	Marks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B		
		PART –A		
1	a)	Explain role of back empf in a dc machine		[3]
	b)	Explain the function of field poles in a dc machine		[4]
	c)	List the different types of Dc Motor.		[4]
	d)	Explain the function of a transformer and give its applications		[4]
	e)	Explain the principle of operation of an Induction motor.		[4]
	f)	List the applications of AC servomotors.		[3]
		PART -B		
2	a)	Discuss about S.I. units		[8]
	b)	Derive the relation for the magnetic stored energy of a singly excited magn	etic	[8]
		field system		
3	a)	Explain the different methods of Excitation of a DC Generators with suitable diagrams	e	[8]
	b)	A short shunt compound generator has armature, series field and shunt field	-	[8]
		resitances of $0.06\Omega,0.03\Omega$ and 110Ω respectively. It supplies 100 lamps rate	ed at	
		250V, 40 W. Find the generated emf. Assume that contact drop/brush = 1V.	,	
4	a)	Explain the terms armature reaction and commutation in dc generator		[8]
	b)	Explain the different speed control methods on Dc Motors		[8]

5	a)	Explain the behavior transformer on load and draw the phasor diagram for Lagging	[8]
		loads	
	b)	A 220 KVA transformer has an efficiency of 97 % at full load. If the maximum	[8]
		efficiency occurs at three quarters of full load, calculate the efficiency at half load.	
		Assume negligible magnetizing current and power factor of 0.8 at all loads.	
6	a)	Prove that the frequency of the rotor current is equal to the slip times the supply	[8]
		frequency in a three phase induction motor.	
	b)	A 3-phase, 6 pole , 50 Hz induction motor has a slip of 1 $\%$ at no load and 3% at	[8]
		full load. Find: i)Synchronous speed ii) No – load speed iii) Full load speed iv)	
		Frequency of rotor current at standstill and v) Frequency of rotor current at full	
		load.	
7	a)	Explain with a neat diagram the working of a AC servomotor	[10]
	b)	List the differences between Single phase induction motor and three phase	[6]
		induction motor.	