II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRONIC DEVICES AND CIRCUITS

(Com. to ECE, EIE, ECC)

Tir	me: 3 hours Max. M	Iarks: 70				
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)					
	2. Answer ALL the question in Part-A3. Answer any THREE Questions from Part-B					
	2. Allswer any THREE Questions from Fart-b					
	<u>PART -A</u>					
1.	a) What is meant by energy band?	(3M)				
	b) Describe Tunneling phenomenon?	(4M)				
	c) Define Ripple factor and Form factor.	(4M)				
	d) Describe the basic structure of the BJT.	(4M)				
	e) What is the effect of change in temperature on the stability of operating point?	(4M)				
	f) The output of common emitter amplifier is 180 ⁰ out of phase with the input. Explain	the				
	reason.	(3M)				
	<u>PART –B</u>					
2.	a) Explain the principle of Hall effect with diagram and write its applications	(8M)				
	b) What is law of junction? Explain	(8M)				
3.	a) Explain the construction and working of Tunnel diode.	(8M)				
	b) Explain the construction and working of LCD.	(8M)				
4.	a)What are different types of rectifiers? Compare them	(6M)				
	b) Determine the rating of a transformer to deliver 125 watts of dc power to a load for the	the				
	following. (i) Half wave rectifier. (ii) Full wave rectifier (iii) Bridge rectifier	(10M)				
5.	a) Draw the circuit diagram for finding the CC characteristics of a Transistor.	(8M)				
	b) Explain the working of a NPN transistor.	(8M)				
6.	a) What is Biasing? Explain the need of it. List out different types of biasing methods.	(6M)				
	b) If the various parameters of a CE Amplifier which uses the self bias method are					
	V_{CC} =12V, R_1 =5K Ω , R_2 =10K Ω , R_C =3K Ω , Re=1K Ω and β =50, find i) the coordinate					
	operating point and ii) the Stability Factor, assuming the transistor to be of silicon.	(10M)				
7.	a) Give the approximate H-parameter conversion formulae for CB and CE configuration	n in				
	terms of CC.	(10M)				
	b) Compare A _V , A _I , R _i and R _o of CE, CB and CC configurations.	(6M)				

II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRONIC DEVICES AND CIRCUITS

(Com. to ECE, EIE, ECC)

	(Com. to ECE, EIE, ECC)	
Tir	me: 3 hours Ma	x. Marks: 70
	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B	
	<u>PART –A</u>	
1.	a) Define Depletion region and explain how the pn junction formed? (4M)	
	b) What are the applications of Varactor diode?	(3M)
	c) Define Transformer utilization factor.	(4M)
	d) What are the applications of MOSFET?	(4M)
	e) What is meant by Amplification and in what region of the characteristics the tra-	
	operated as amplifier?	(4M)
	f) What are half power frequencies? Why it is named so?	(3M)
	<u>PART -B</u>	
2.	a) Derive an expression for Continuity Equation.	(8M)
	b) Derive an expression for Fermi level in an intrinsic semiconductor.	(8M)
3.	a) Explain the construction and working of Zener diode.	(8M)
	b) Explain the construction and working of SCR.	(8M)
4.	a) Define Rectification efficiency and derive expression for it for the following	
	(i) Half wave rectifier (ii) Full wave rectifier (iii) Bridge rectifier.	(8M)
	b) Design Two-section LC filter to provide an output voltage 9V with a load current	nt of 100 mA
	and the ripple is limited to 0.2%.	(8M)
5.	a) Draw and explain the CB characteristics of a transistor.	(8M)
	b) Draw the Eber-moll model of a transistor.	(8M)
6.	a) What is the necessity of Biasing circuits? Derive the expression for stability fact bias circuit.	(8M)
	b) In a Silicon transistor circuit with a fixed bias, V_{CC} =10V, R_{C} =4K Ω , R_{B} =7K Ω , β V_{BE} =0.7V.Find the operating point and Stability factor.	=100, (8M)
7.	Derive the Expressions for voltage gain, current gain, input impedance, output im	pedance of a

(16M)

CE amplifier, using exact and approximate model.

II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRONIC DEVICES AND CIRCUITS

(Com. to ECE, EIE, ECC)

	(Colli. to ECE, EIE, ECC)				
Tin	ne: 3 hours	Max. Marks: 70			
	Note: 1. Question Paper consists of two parts (Part-A and Part-B 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B)			
PART –A					
1.	a) What are conductors, insulators and semiconductors?b) What are the applications of laser diode?	(4M) (3M)			
	c) What are the advantages and disadvantages of full wave rectifier?d) What are the differences between BJT and JFET?e) Define the stability factor and write the expression for it	(4M) (4M) (3M)			
f) Define the stability factor and write the expression for it PART -B (4M)					
2.	a) What is the Hall Effect? Derive the an Expression for Hall Coefficient?b) Explain the Diffusion and Drift currents for a semiconductor.	(8M) (8M)			
3.	a) Explain in detail about the current components in a pn junction diode.b) Explain in detail the break down mechanisms in a diode.	(8M) (8M)			
4.	a) With a neat sketch explain the working of bridge rectifier.b) Define Ripple factor and derive expression for it for the following (i) Half w (ii) Full wave rectifier (iii) Bridge rectifier.	(6M) vave rectifier (10M)			
5.	a) Compare CE, CB and CC configurations.b) Explain in detail the working of JFET and draw its drain and transfer characteristics.	(6M) teristics. (10M)			
6.	In a Self bias circuit containing R_1 =50K Ω , R_2 =25K Ω , Re =1K Ω , R_C =3K Ω , β V_{BE} =0.7V. Find the operating point, S, S', and S''.	=90, V _{CC} =12V, (16M)			
7.	a) Analyze a Single stage transistor amplifier using h-parameters.b) Give the approximate H-parameter conversion formulae for CC and CB conterms of CE.	(6M) figuration in (10M)			

SET - 4

II B. Tech I Semester Supplementary Examinations, June - 2015 ELECTRONIC DEVICES AND CIRCUITS

(Com. to ECE, EIE, ECC)

Tir	me: 3 hours	Max. Marks: 70			
	Note: 1. Question Paper consists of two parts (Part-A and Part-B 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B	3)			
<u>PART –A</u>					
1.	a) Define Energy gap. How it varies with temperature?	(4M)			
	b) What is Avalanche breakdown?	(4M)			
	c) Define peak inverse voltage.	(3M)			
	d) Define Amplification factor and transconductance.	(4M)			
	e) Define Stability factor.	(3M)			
	f) Draw H-parameter model of a CE transistor.	(4M)			
<u>PART –B</u>					
2.	a) Derive an expression for Fermi level in an extrinsic semiconductor.	(10M)			
	b) Explain about Energy Band Diagrams.	(6M)			
3.	a) Explain the working of pn diode in forward and reverse bias conditions.	(8M)			
	b) Explain the construction and working of UJT.	(8M)			
4. a) Draw the block diagram of a power supply. Explain in detail about different eleme		elements in			
	power supply.	(8M)			
	b) With a neat sketch explain the working of Half-wave rectifier.	(8M)			
5.	a) Explain the working of a PNP transistor with a neat diagram (6M)				
	b) Explain the construction and working of Enhancement MOSFET.	(10M)			
6.	a) What is the need of Biasing and Stabilization? Explain	(8M)			
	b) Explain in detail about Thermal Runaway and Thermal Resistance.	(8M)			
7.	a) Give the advantages of H-parameter analysis.	(4M)			
	b) The H-parameters of a Transistor used in a CE circuit are h_{ie} =1K Ω , h_{re} =0.00	01. h _{fe} =50,			
	h_{oe} =100K. The load resistance for the transistor is 1K Ω in the collector c	ircuit. Determine			
	R_i , R_O , A_V , A_i in the amplifier stage (Assume Rs= 1K Ω).	(12M)			