Set No - 1

I B. Tech I Semester Regular Examinations Dec. - 2016 MATHEMATICS-II (Mathematical Methods) (Com. to CSE, IT, Agri Engg.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, **Four** Questions should be answered from **Part-B** *****

PART A

1. a) Find real root of the equation $3x = e^x$ by using Bisection method up to 3 approximations.

b) Show that $e^{x}\left(u_{0} + x\Delta u_{0} + \frac{x^{2}}{2!}\Delta^{2}u_{0} + ...\right) = u_{0} + u_{1}x + u_{2}\frac{x^{2}}{2!} + ...$

- c) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Trapezoidal rule.
- d) Explain about Dirichlet's conditions for a Fourier expansion.
- e) The temperatures at one end of a bar OA of 50 cm length with insulated sides are

kept at $0^{\circ}C$ at O and $100^{\circ}C$ at A until steady state conditions prevail. Find steady state temperature.

f) If F(p) is the complex Fourier transform of f(x) then prove that

$$F\{f(ax)\} = \frac{1}{a}F\left(\frac{p}{a}\right), a > 0.$$

g) Using Newton-Raphson method find square root of a number. $(7 \times 2 = 14M)$

PART B

- 2. a) Solve $x^3 = 2x + 5$ for a positive root by regula-falsi method.
 - b) Solve the system of equations by Newton Raphson method $3yx^2 10x + 7 = 0$ and $y^2 - 5y + 4 = 0$. (7M+7M)

3. a) Fit a interpolating polynomial in x for the following data

х	1	4	6	8	10	
У	1	7	9	12	21	
polynomial to the data						

b) Using Lagrange's formula fit a polynomial to the data

Х	0	2	5	9
f(x)	1	12	15	33

(7M+7M)

Set No - 1

4. a) Evaluate
$$\int_0^2 \frac{dx}{x^3 + x + 1}$$
 by using Simpson's 1/3rd rule with h= 0.25.

b) Evaluate y(0.8) using Runge Kutta method given $y' = (x + y)^{\frac{1}{2}}$, y(0.4) = 0.41

(7M+7M)

5. a) Find the Fourier series of *xcosx* for 0<x< 2π.
b) Find half range Fourier sine series of f(x) = π-x in [0,π].

(7M+7M)

6. A tightly stretched flexible string has its ends fixed at x=0 and x=10. At time t=0, the string is given a shape defined by f(x) = kx(10-x), where k is a constant and then released. Find the displacement of any point x of the string at any time.

(14M)

- 7. a) Find the Fourier transform of $\frac{1}{\sqrt{|\mathbf{x}|}}$.
 - b) Find the inverse Fourier transform of f(x) of $F_s(p) = \frac{p}{1+p^2}$

(7M + 7M)

2 of 2

|"|""||"||"||||

Set No - 2

I B. Tech I Semester Regular Examinations Dec. - 2016 MATHEMATICS-II (Mathematical Methods) (Com. to CSE, IT, Agri Engg.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, **Four** Questions should be answered from **Part-B** *****

PART A

- 1. a) Find positive root of the equation $x^3 2x 5 = 0$ using Regula-Falsi method. Carry out two approximations.
 - b) Find the missing term in the following table

Х	0	1	2	3	4
Y	1	3	9	-	81

c) The table below shows the temperature f(t) as a function of time:

ſ	t	1	2	3	4	5	6	7
	f(t)	81	75	80	83	78	70	60

Using Simpson's $\frac{1}{3}$ rd rule, evaluate $\int_{1}^{7} f(t) dt$.

- d) Expand the function $f(x) = x^3$ as a Fourier series in $-\pi \le x \le \pi$.
- e) Write One-Dimensional wave equation with initial and Boundary conditions.
- f) If $F_s(p)$ and $F_c(p)$ are the Fourier sine and cosine transforms of f(x) respectively, then

prove
$$F_{s}[f(x)\cos ax] = \frac{1}{2}[F_{s}(p+a) + F_{s}(p-a)]$$

g) Evaluate (i) $\Delta^2 e^{2x+3}$ (ii) $\Delta^2 \cos 2x$.

 $(7 \times 2 = 14M)$

PART B

- 2. a) Using Regula-falsi method, find the real root of $2x \log x = 6$ correct to three decimal places.
 - b) Solve the system of equations by Newton Raphson method $x^2 + y^2 1 = 0$ and

$$y - x^2 = 0.$$
 (7M+7M)

3. a) Fit a interpolating polynomial in x for the following data

x	0	1	2	3	4
у	-3	3	4	27	57

b) Find Interpolating polynomial by Lagrange's method and hence find f(2) for the following data

Х	0	1	3	4	
f(x)	-12	0	6	12	

(7M+7M)

- 4. a) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by using Simpson's $1/3^{rd}$ rule with h= 0.1.
 - b) Find y(74) given that y(50) = 201, y(60) = 225, y(70) = 248 and y(80) = 274. Using Newton's difference formula.

(7M+7M)

- 5. a) Expand cosπx in (0,1) as Fourier sine series.
 b) Obtain the Fourier sin series of f(x) = e^{-x} in the interval 0<x< 2π. (7M+7M)
- 6. The ends A and B of a rod 20 cm long have the temperature at 30° C and 80° until steady states prevail. The temperatures of the ends are change at 40° C and 60° C respectively. Find the temperature distribution in the rod at time *t*.

(14M)

- 7. a) Find the Fourier sine and cosine transform of $f(x) = \frac{1}{1+x^2}$.
 - b) Find the inverse Fourier cosine transform of $F_c(p) = p^n e^{-ap}$.

(7M+7M)

Set No - 3

I B. Tech I Semester Regular Examinations Dec. - 2016 MATHEMATICS-II (Mathematical Methods) (Com. to CSE, IT, Agri Engg.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, **Four** Questions should be answered from **Part-B** *****

PART A

- 1. a) Using Newton-Raphson method find reciprocal of 18.
 - b) The function $y = \sin x$ is tabulated below

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$y = \sin x$	0	0.70711	1.0

Using Lagrange's interpolation formula, find the value of $sin\left(\frac{\pi}{6}\right)$.

- c) Solve numerically using Euler's method $y' = y^2 + x$, y(0) = 1. Find y(0.1) and y(0.2).
- d) Express f(x) = x as a Half range sine series in 0 < x < 2.
- e) Solve $u_x 4u_y = 0$, $u(0, y) = 8e^{-3y}$ by the method of separation of variables.
- f) Find finite Fourier cosine transform of f(x) = x, 0 < x < 4.
- g) Using Euler's method find an approximate value of y corresponding to x = 0.4 given that

$$\frac{dy}{dx} = x + y \text{ and } y = 1 \text{ at } x = 0.$$
 (7×2 = 14M)

PART B

- 2. a) Find a real root of the equation $x^3 4x 9 = 0$ using False position method correct to three decimal places.
 - b) Solve the system of equations by Newton Raphson method $3yx^2 10x + 7 = 0$ and $y^2 - 5y + 4 = 0$. (7M+7M)

3. a) From the following table of half yearly premium for policies at different ages, estimate the premium for policies at the age of 63.

Age x	45	50	55	60	65
Premium y	114.84	96.16	83.32	74.48	68.48

b) Apply Lagrange's formula to find f(5) given that f(1)=2, f(2)=4, f(4)=16 and f(7)=128.

(7M+7M)

Set No - 3

- 4. a) Evaluate ∫₀⁶ e^x dx/(x+1) by using Simpson's 1/3rd rule with h= 1.
 b) Evaluate y(0.1) and y(0.2) using Runge Kutta method given y¹ = xy + y², y(0) = 1. (7M+7M)
 5. a) Find the Fourier series of the function f(x) = |sin x| in [-1, 1].
- a) Find the Fourier series of the function f(x) = |sin x| in [-1, 1].
 b) Obtain the Fourier cosine series of f(x) = e^{-x} in the interval 0<x< 2π.

(7M+7M)

6. The ends A and B of a rod of length 20 cm have the temperatures at 30°C and 80°C until steady state conditions prevails. The temperature of the ends is changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t.

(7M+7M)

- 7. a) Find Fourier transform of f(x) defined by $f(x) = e^{-x^2/2}, -\infty < x < \infty$.
 - b) Find the inverse Fourier cosine transform of $F_c(p) = \frac{\sin ap}{p}$.

(7M+7M)

Set No - 4

I B. Tech I Semester Regular Examinations Dec. - 2016 MATHEMATICS-II (Mathematical Methods) (Com. to CSE, IT, Agri Engg.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, **Four** Questions should be answered from **Part-B** *****

PART A

1. a) By the fixed point iteration process, find the root correct to two decimal places of the

equation $x = \cos x$ near $x = \frac{\pi}{4}$.

- b) Prove that $\mu^2 = 1 + \frac{\delta^2}{4}$
- c) Write merits and demerits of Runge-Kutta method.
- d) Find Fourier series for the function $f(x) = |x|, -\pi < x < \pi$.
- e) Solve $4u_x + u_y = 0$ and $u(0,y) = e^{-5y}$ by the method of separation of variables.
- f) Find finite Fourier sine transform of $f(x) = x, 0 < x < \pi$.
- g) Write the formula for half range cosine series expansion of f(x) in (0,l). $(7 \times 2 = 14M)$

PART B

2. a) Using regula-falsi method, find the real root of $2x - \log x = 6$ correct to three decimal places.

b) Solve the system of equations by Newton Raphson method $3yx^2 - 10x + 7 = 0$ and

 $y^2 - 5y + 4 = 0$.

(7M+7M)

3. a) Using Lagrange's Interpolation formula find the value of y(10) from the following table

X	5	6	9	11
y(x)	12	13	14	16

b) Fit a interpolating polynomial in x for the following data

I	X	0	1	2	3	4
	у	3	5	6	9	17

(7M+7M)

4. a) Evaluate $\int_{1}^{7} \frac{e^{x} dx}{x+1}$ by using Simpson's 1/3rd rule with h=1.

b) Using Runge-Kutta fourth order formula, find y(0.2) for the equation $y^1 = \frac{y-x}{y+x} y(0) = 1$ taking h=0.1.

5. a) Find the Fourier series of the function f(x) = e^x in [0,2].
b) Obtain the Fourier sine series of f(x) = *xsinx* in the interval 0<x<π.

(7M+7M)

(7M+7M)

6. A tightly stretched flexible string has its ends fixed at x=0 and x= 10. At time t=0, the string is given a shape defined by f(x) = kx(10-x), where k is a constant and then released. Find the displacement of any point x of the string at any time.

(14M)

- 7. a) Find Fourier cosine transform of $f(x) = \frac{e^{-ax}}{x}$
 - b) Find the inverse Fourier cosine transform of $F_c(p) = p^n e^{-ap}$.

(7M+7M)

Set No - 4